Skip to main content
Log in

The relation between entanglement measure and coherence measure based on Hellinger distance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In (Qi et al. in J Phys A Math Theor 50(28):285301, 2017), the authors proposed a coherence measure based on concurrence measure and obtained a relation between the coherence measure and concurrence entanglement measure. In this paper, motivated by this idea, we introduce an entanglement measure based on the Hellinger distance for bipartite quantum states and prove that it satisfies the necessary conditions of entanglement measure. Furthermore, we obtained a relation between the given entanglement measure and quantum coherence measure based on Hellinger distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  2. Strieltsov, A., Singh, U., Dhar, H.S.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Napoli, C., Bromley, T.R., Cianciaruso, M.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116(15), 150502 (2016)

    Article  ADS  Google Scholar 

  4. Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Lett. A 97(3), 032342 (2017)

    Google Scholar 

  5. Muthuganesan, R., Chandrasekar, V.K., Sankaranarayanan, R.: Quantum coherence measure based on affinity. Phys. Lett. A 394(1), 127205 (2021)

    Article  MathSciNet  Google Scholar 

  6. Liu, C.L., Zhang, D.J., Yu, X.D.: A new coherence measure based on fidelity. Quantum Inf. Process. 16(8), 198 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95(4), 042337 (2017)

    Article  ADS  Google Scholar 

  8. Yuan, X., Zhou, H., Cao, Z.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92(2), 022124 (2015)

    Article  ADS  Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Akbari-Kourbolagh, Y., Alijanzadeh-Boura, H.: On the entanglement of formation of two-mode Gaussian states: a compact form. Quantum Inf. Process. 14(11), 4179–4199 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Baba, H., Kaydi, W., Daoud, M.: Entanglement of formation and quantum discord in multipartite j-spin coherent states. Int. J. Mod. Phys. B 26(34), 2050237 (2020)

    Article  MathSciNet  Google Scholar 

  12. Bhaskar, V.S., Panigrahi, P.K.: Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange’s identity and wedge product. Quantum Inf. Process. 16(5), 118 (2017)

  13. Qi, X., Gao, T., Yan, F.: Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems. Quantum Inf. Process. 16(1), 23 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Teng, P.: Accurate calculation of geometric measure of entanglement for multipartite quantum system using tensor decomposition methods. Quantum Inf. Process. 16, 181 (2017)

    Article  ADS  Google Scholar 

  15. Allen, G.W., Meyer, D.A.: Polynomial monogamy relations for entanglement negativity. Phys. Rev. Lett. 118(8), 080402 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Siyouri, F., El Baz, M., Hassouni, Y.: The negativity of Wigner function as a measure of quantum correlations. Quantum Inf. Process. 15, 4237–4252 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Monras, A., Adesso, G., Giampaolo, S.M.: Entanglement quantification by local unitary operations. Phys. Rev. A 84(1), 012301 (2011)

    Article  ADS  Google Scholar 

  18. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4998 (2016)

    Article  ADS  Google Scholar 

  19. Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A Math. Theor. 50(28), 285301 (2017)

    Article  MathSciNet  Google Scholar 

  20. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49(47), 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Uhlmann, A.: Entropy and optimal decompositions of states relative to a maximal commutative subalgebra. Open Syst. Inf. Dyn. 5, 209–228 (1998)

    Article  Google Scholar 

  22. Guo, Y., Hou, J., Wang, Y.: Concurrence for infinite-dimensional quantum systems. Quantum Inf. Process. 12(8), 2641–2653 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Roga, W., Spehner, D., Illuminati, F.: Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations. J. Phys. A Math. Theor. 49(23), 235301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jin, Z.X., Fei, S.M.: Quantifying quantum coherence and non-classical correlation based on Hellinger distance. Phys. Rev. A 97(6), 062342 (2018)

    Article  ADS  Google Scholar 

  25. Vedral, V., Plenio, M.B., Rippin, M.A.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The project is supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D111254 and 201801D221019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaxue Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, L. & Yan, D. The relation between entanglement measure and coherence measure based on Hellinger distance. Quantum Inf Process 21, 132 (2022). https://doi.org/10.1007/s11128-022-03465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03465-1

Keywords

Navigation