Skip to main content
Log in

Measurement-device-independent quantum wireless network communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum wireless communication networks are an important part of global quantum networks. Here we propose a measurement-device-independent quantum wireless network communication protocol, which can not only close detector-side-channel loopholes launched by malicious nodes but also remedy the drawback of a perfectly shared Greenberger-Horne-Zeilinger state between the nodes. Moreover, the correctness of the generated entanglement between the sender and the receiver is checked. The security analysis shows that the proposed protocol is secure against common attacks from malicious nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362(6412), eaam9288 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hanzo, L., Haas, H., Imre, S., O’Brien, D., Rupp, M., Gyongyosi, L.: Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE 100, 1853–1888 (2012)

    Article  Google Scholar 

  3. Cheng, S.-T., Wang, C.-Y., Tao, M.-H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Area. Commun. 23, 1424–1432 (2005)

    Article  Google Scholar 

  4. Yu, X.-T., Xu, J., Zhang, Z.-C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 090311 (2013)

    Article  ADS  Google Scholar 

  5. Wang, K., Yu, X.-T., Lu, S.-L., Gong, X.-Y.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)

    Article  ADS  Google Scholar 

  6. Wang, K., Gong, X.-Y., Yu, X.-T., Lu, S.-L.: Addendum to “Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation.” Phys. Rev. A 90, 044302 (2014)

    Article  ADS  Google Scholar 

  7. Cai, X.-F., Yu, X.-T., Shi, L.-H., Zhang, Z.-C.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9(5), 646–651 (2014)

    Article  ADS  Google Scholar 

  8. Shi, L.-H., Yu, X.-T., Cai, X.-F., Gong, X.-Y., Zhang, Z.-C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)

    Article  ADS  Google Scholar 

  9. Xiong, P.-Y., Yu, X.-T., Zhan, H.-T., Zhang, Z.-C.: Multiple teleportation via partially entangled GHZ state. Front. Phys. 11(4), 110303 (2016)

    Article  ADS  Google Scholar 

  10. Zhan, H.-T., Yu, X.-T., Xiong, P.-Y., Zhang, Z.-C.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25(5), 050305 (2016)

    Article  Google Scholar 

  11. Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)

    Article  ADS  Google Scholar 

  12. Zhang, Z.-H., Wang, J.-W., Sun, M.: Multihop Teleportation via the composite of asymmetric W State and Bell State. Int. J. Theor. Phys. 57, 3605–3620 (2018)

    Article  MathSciNet  Google Scholar 

  13. Yang, Y.-G., Cao, S.-N., Zhou, Y.-H., Shi, W.-M.: Quantum wireless network communication based on cluster states. Mod. Phys. Lett. A 35(21), 2050178 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gao, X.-Q., Zhang, Z.-C., Sheng, B.: Multi-hop teleportation in a quantum network based on mesh topology. Front. Phys. 13, 130314 (2018)

    Article  Google Scholar 

  15. Xiong, P.-Y., Yu, X.-T., Zhang, Z.-C., et al.: Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Front. Phys. 12, 120302 (2017)

    Article  ADS  Google Scholar 

  16. Li, Z.Z., Xu, G., Chen, X.B., et al.: Multi-user quantum wireless network communication based on multi-qubit GHZ state. IEEE Commun. Lett. 20, 2470–2473 (2016)

    Article  Google Scholar 

  17. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  18. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  19. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)

    Article  Google Scholar 

  20. Gerhardt, I., Liu, Q., Lamas-Linares, A.A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)

    Article  ADS  Google Scholar 

  21. Qin, H., Kumar, R., Makarov, V., et al.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)

    Article  Google Scholar 

  22. Pan, J., Zeilinger, A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. Chang, D.E., Vuletic, V., Lukin, M.D.: Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014)

    Article  ADS  Google Scholar 

  24. Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a Λ-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97, 062318 (2018)

    Article  ADS  Google Scholar 

  25. Song, G.Z., Munro, E., Nie, W., Kwek, L.C., Deng, F.G., Long, G.L.: Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Phys. Rev. A 98, 023814 (2018)

    Article  ADS  Google Scholar 

  26. Qian, J., Feng, X.L., Gong, S.Q.: Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection. Phys. Rev. A 72, 052308 (2005)

    Article  ADS  Google Scholar 

  27. Xia, Y., Kang, Y.H., Lu, P.M.: Complete polarized photons Bell-states and Greenberger–Horne–Zeilinger-states analysis assisted by atoms. J. Opt. Soc. Am. B 31(9), 2077–2082 (2014)

    Article  ADS  Google Scholar 

  28. Li, T., Miranowicz, A., Xia, K., Nori, F.: Resource-efficient analyzer of Bell and Greenberger-Horne-Zeilinger states of multiphoton systems. Phys. Rev. A 100, 052302 (2019)

    Article  ADS  Google Scholar 

  29. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gao, S., Pan, S.J., Yang, Y.G.: Quantum algorithm for kernelized correlation filter. Sci. Chin. Inf. Sci. https://doi.org/10.1007/s11432-021-3400-3

  31. Yang, Y.G., Lv, X.L., Gao, S., et al.: Detector-device-independent quantum key agreement based on single-photon bell state measurement. Int. J. Theor. Phys. 61, 50 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.

Funding

This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202104); the National Natural Science Foundation of China (Grant Nos. 62071015, 62171264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YL., Yang, YG., Zhou, YH. et al. Measurement-device-independent quantum wireless network communication. Quantum Inf Process 21, 154 (2022). https://doi.org/10.1007/s11128-022-03469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03469-x

Keywords

Navigation