Abstract
Quantum wireless communication networks are an important part of global quantum networks. Here we propose a measurement-device-independent quantum wireless network communication protocol, which can not only close detector-side-channel loopholes launched by malicious nodes but also remedy the drawback of a perfectly shared Greenberger-Horne-Zeilinger state between the nodes. Moreover, the correctness of the generated entanglement between the sender and the receiver is checked. The security analysis shows that the proposed protocol is secure against common attacks from malicious nodes.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-022-03469-x/MediaObjects/11128_2022_3469_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-022-03469-x/MediaObjects/11128_2022_3469_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11128-022-03469-x/MediaObjects/11128_2022_3469_Fig3_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data that support the findings of this study are available upon reasonable request from the authors.
References
Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362(6412), eaam9288 (2018)
Hanzo, L., Haas, H., Imre, S., O’Brien, D., Rupp, M., Gyongyosi, L.: Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE 100, 1853–1888 (2012)
Cheng, S.-T., Wang, C.-Y., Tao, M.-H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Area. Commun. 23, 1424–1432 (2005)
Yu, X.-T., Xu, J., Zhang, Z.-C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 090311 (2013)
Wang, K., Yu, X.-T., Lu, S.-L., Gong, X.-Y.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)
Wang, K., Gong, X.-Y., Yu, X.-T., Lu, S.-L.: Addendum to “Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation.” Phys. Rev. A 90, 044302 (2014)
Cai, X.-F., Yu, X.-T., Shi, L.-H., Zhang, Z.-C.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9(5), 646–651 (2014)
Shi, L.-H., Yu, X.-T., Cai, X.-F., Gong, X.-Y., Zhang, Z.-C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)
Xiong, P.-Y., Yu, X.-T., Zhan, H.-T., Zhang, Z.-C.: Multiple teleportation via partially entangled GHZ state. Front. Phys. 11(4), 110303 (2016)
Zhan, H.-T., Yu, X.-T., Xiong, P.-Y., Zhang, Z.-C.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25(5), 050305 (2016)
Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)
Zhang, Z.-H., Wang, J.-W., Sun, M.: Multihop Teleportation via the composite of asymmetric W State and Bell State. Int. J. Theor. Phys. 57, 3605–3620 (2018)
Yang, Y.-G., Cao, S.-N., Zhou, Y.-H., Shi, W.-M.: Quantum wireless network communication based on cluster states. Mod. Phys. Lett. A 35(21), 2050178 (2020)
Gao, X.-Q., Zhang, Z.-C., Sheng, B.: Multi-hop teleportation in a quantum network based on mesh topology. Front. Phys. 13, 130314 (2018)
Xiong, P.-Y., Yu, X.-T., Zhang, Z.-C., et al.: Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Front. Phys. 12, 120302 (2017)
Li, Z.Z., Xu, G., Chen, X.B., et al.: Multi-user quantum wireless network communication based on multi-qubit GHZ state. IEEE Commun. Lett. 20, 2470–2473 (2016)
Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)
Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)
Lydersen, L., Wiechers, C., Wittmann, C., et al.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)
Gerhardt, I., Liu, Q., Lamas-Linares, A.A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)
Qin, H., Kumar, R., Makarov, V., et al.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)
Pan, J., Zeilinger, A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)
Chang, D.E., Vuletic, V., Lukin, M.D.: Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014)
Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a Λ-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97, 062318 (2018)
Song, G.Z., Munro, E., Nie, W., Kwek, L.C., Deng, F.G., Long, G.L.: Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Phys. Rev. A 98, 023814 (2018)
Qian, J., Feng, X.L., Gong, S.Q.: Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection. Phys. Rev. A 72, 052308 (2005)
Xia, Y., Kang, Y.H., Lu, P.M.: Complete polarized photons Bell-states and Greenberger–Horne–Zeilinger-states analysis assisted by atoms. J. Opt. Soc. Am. B 31(9), 2077–2082 (2014)
Li, T., Miranowicz, A., Xia, K., Nori, F.: Resource-efficient analyzer of Bell and Greenberger-Horne-Zeilinger states of multiphoton systems. Phys. Rev. A 100, 052302 (2019)
Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)
Gao, S., Pan, S.J., Yang, Y.G.: Quantum algorithm for kernelized correlation filter. Sci. Chin. Inf. Sci. https://doi.org/10.1007/s11432-021-3400-3
Yang, Y.G., Lv, X.L., Gao, S., et al.: Detector-device-independent quantum key agreement based on single-photon bell state measurement. Int. J. Theor. Phys. 61, 50 (2022)
Acknowledgements
We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.
Funding
This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202104); the National Natural Science Foundation of China (Grant Nos. 62071015, 62171264).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, YL., Yang, YG., Zhou, YH. et al. Measurement-device-independent quantum wireless network communication. Quantum Inf Process 21, 154 (2022). https://doi.org/10.1007/s11128-022-03469-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03469-x