Skip to main content
Log in

Quantum state transfer by electromagnetic fields initialized in vacuum states in a system comprised of two consecutive cavities connected by an optical fiber in the presence of an external classical field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Hamiltonian of a system of two successive Jaynes-Cummings cells (JCCs) indirectly coupled through an optical fiber mode under the influence of an external classical field (ECF) is simplified. In the framework of unitary transformations of the atomic and bosonic delocalized operators, the simplification is carried out. Three dispersive regimes, namely, large optical fiber coupling strength (OFCS), large detuning, and comparable OFCS and detuning are considered. The analytical solutions of Schrödinger equation for the different Hamiltonians when the fields are initially in the vacuum states and initially the first and the second atoms are in the excited and the ground states, respectively, are presented. The exploitation of the atomic population inversion function (APIF) of a single atom to the track of the quantum state transfer (QST) between the distant atoms is considered. The temporal evolution of the APIF is investigated. Effects of the external classical fields couplings (ECFCs), and the OFCS on the APIF are analyzed. Analysis of the resulted features based on the difference between the ECFC and the localized and delocalized atomic frequencies is presented. The collapses-revivals phenomenon (CRP) is clearer in absence of the ECF. The behavior of both the APIF and the CRP follow those for the overlap of evanescent fields model while the rates of the QST in the two schemes are un equiv. The ECFs reformulate the initial quantum states and may augment the localized detuning. The ECFs either accelerate the transfer of the quantum state or delecerte it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  2. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragan, J.J.: Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1323 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragan, J.J.: Coherence versus incoherence: Collapse and revival in a simple quantum model. Phys. Rev. A. 23, 236 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. Rempe, C., Walther, H., Klein, N.: Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353 (1987)

    Article  ADS  Google Scholar 

  5. Walther, H.: The Single Atom Maser and the Quantum Electrodynamics in a Cavity. Phys. Scr. T23, 165 (1988)

    Article  ADS  Google Scholar 

  6. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragan, J.J.: Theory of Spontaneous-Emission Line Shape in an Ideal Cavity. Phys. Rev. Lett. 51, 550 (1983)

    Article  ADS  Google Scholar 

  7. Agarwal, G.S.: Vacuum-field Rabi oscillations of atoms in a cavity. J. Opt. Soc. Am. B 2, 480 (1983)

    Article  ADS  Google Scholar 

  8. Agarwal, G.S.: Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity. Phys. Rev. Lett. 53, 1732 (1984)

    Article  ADS  Google Scholar 

  9. Stenholm, S.: Quantum theory of RF resonances: the semiclassical limit. Phys. Rep. 6C, 1 (1973)

    Article  ADS  Google Scholar 

  10. Stenholm, S.: A Bargmann representation solution of the Jaynes-Cummings model. Opt. Commun. 36, 75 (1981)

    Article  ADS  Google Scholar 

  11. Von Foerster, T.: A comparison of quantum and semi-classical theories of the interaction between a two-level atom and the radiation field. J. Phys. A 8, 95 (1975)

    Article  ADS  Google Scholar 

  12. Meystre, P., Geneax, E., Quattropani, A., Faish, F.: Long-time behaviour of a two-level system in interaction with an electromagnetic field. Nuovo Cimento B 25, 521 (1975)

    Article  ADS  Google Scholar 

  13. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragon, J.J.: Four-momentum transfer between groups of secondary particles in proton-nucleus interactions at 200 GeV. Phys. Rev. A 23, 14 (1981)

    Google Scholar 

  14. Yoo, H.-I., Eberly, J.H.: Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Physics Reports 118, 239 (1985)

    Article  ADS  Google Scholar 

  15. Knight, P.L., Milonni, P.W.: The Rabi frequency in optical spectra. Phys. Rep 66c, 21 (1980)

  16. Knight, P.L., Radmore, P.M.: Quantum revivals of a two-level system driven by chaotic radiation. Phys. Lett. 90A, 342 (1982)

    Article  ADS  Google Scholar 

  17. Knight, P.L.: Quantum Fluctuations and Squeezing in the Interaction of an Atom with a Single Field Mode. Phys. Scr. T12, 51 (1986)

    Article  ADS  Google Scholar 

  18. Meystre, P., Zubairy, M.S.: Squeezed states in the Jaynes-Cummings model. Phys. Lett. 89A, 390 (1982)

    Article  ADS  Google Scholar 

  19. Singh, S.: Field statistics in some generalized Jaynes-Cummings models. Phys. Rev. A 25, 3206 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  20. Milburn, G.J.: Interaction of a Two-level Atom with Squeezed Light. Opt. Acta 31, 671 (1984)

    Article  ADS  Google Scholar 

  21. Barnett, S.M., Filipowicz, F., Javanainen, J., Knight, P.L., Meystre, P.: The Jaynes-cummings model and beyond. Frontiers Quantum Opt. 31, 485–520 (1984)

    Google Scholar 

  22. Compagno, G., Peng, J.S., Persico, F.: Squeezing in a two-photon Dicke hamiltonian. Opt. Commun. 57, 415 (1986)

    Article  ADS  Google Scholar 

  23. Carmichael, H.J.: Photon Antibunching and Squeezing for a Single Atom in a Resonant Cavity. Phys. Rev. Lett. 55, 2790 (1985)

    Article  ADS  Google Scholar 

  24. Pui, R.R., Agarwal, G.S.: Collapse and revival phenomena in the Jaynes-Cummings model with cavity damping. Phys. Rev. A 33, 3610 (1986)

    Article  ADS  Google Scholar 

  25. Kuklinski, J.R., Madajczyk, J.L.: Strong squeezing in the Jaynes-Cummings model. Phys. Rev. A 37, 3175 (1988)

    Article  ADS  Google Scholar 

  26. Dick, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  27. Tavis, M., Cummings, F.W.: Exact Solution for an N -Molecule-Radiation-Field Hamiltonian. Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  28. Abdalla, M.S., Ahamed, M.M., Obada, A.-S.F.: Dynamics of a non-linear Jaynes-Cummings model. Phys. A 162, 215 (1990)

    Article  Google Scholar 

  29. Abdalla, M.S., Ahmed, M.M., Obada, A.-S.F.: Multimode and multiphoton processes in a non-linear Jaynes-Cummings model. Phys. A 170, 393 (1991)

    Article  Google Scholar 

  30. Abdalla, M.S., Abdel-Aty, M., Obada, A.-S.F.: Quantum entropy of isotropic coupled oscillators interacting with a single atom. Opt. Commun. 211, 225 (2002)

    Article  ADS  Google Scholar 

  31. Abdalla, M.S., Abdel-Aty, M., Obada, A.-S.F.: Degree of entanglement for anisotropic coupled oscillators interacting with a single atom. J. Opt. B: Quantum Semiclass. Opt. 4, 396 (2002)

    Article  ADS  Google Scholar 

  32. Marchiolli, M.A., Missori, R.J., Roversi, J.A.: Qualitative aspects of entanglement in the Jaynes-Cummings model with an external quantum field. J. Phys. A 36, 12275 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Obada, A.-S.F., Abdalla, M.S., Khalil, E.M.: Statistical properties of two-mode parametric amplifier interacting with a single atom. Physica A 336, 433 (2004)

    Article  ADS  Google Scholar 

  34. Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement of a multi-photon three-level atom interacting with a single-mode field in the presence of nonlinearities. Eur. Phys. J. D 66, 221 (2012)

    Article  ADS  Google Scholar 

  35. Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Quantum Entropy of a Four-Level Atom with Arbitrary Nonlinearities. Int. J. Theor. Phys. 51, 2665 (2012)

    Article  MATH  Google Scholar 

  36. Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entropy of a general three-level atom interacting with a two mode. Laser Phys. 23, 025201 (2013)

    Article  ADS  Google Scholar 

  37. Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement for a general formalism of a three-level atom in a V-configuration interacting nonlinearly with a non-correlated two-mode field. Laser Phys. 23, 055201 (2013)

    Article  ADS  Google Scholar 

  38. Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Collapse-revival phenomenon for different configurations of a three-level atom interacting with a field via multi-photon process and nonlinearities. Eur. Phys. J. D 68, 18 (2014)

    Article  ADS  Google Scholar 

  39. Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement for a general formalism of a three-level atom in an \(\equiv \)-configuration interacting nonlinearly with a non-correlated two-mode field. Optik 136, 602 (2017)

    Article  ADS  Google Scholar 

  40. Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement in a system of a three-level atom interacting with a single-mode field in the presence of arbitrary forms of the nonlinearity and of the atomic initial state. Laser Phys. 24, 055201 (2014)

    Article  ADS  Google Scholar 

  41. Makhviladze, T.M., Shelepin, L.A.: Cooperative effects in radiation processes (multilevel particles and second-order perturbation theory). Phys. Rev. A 9, 538 (1974)

    Article  ADS  Google Scholar 

  42. Bogolubov, N.N., Jr., Le Kien, F., Shumovski, A.S.: Two-phonon process in a three-level system. Phys. Lett. A 101, 201 (1984)

    Article  ADS  Google Scholar 

  43. Abdel-Hafez, A.M., Ahamed, M.M., Obada, A.-S.F.: N-level atom and N-1 modes: Statistical aspects and interaction with squeezed light. Phys. Rev. A 34, 1634 (1987)

    Article  ADS  Google Scholar 

  44. Obada, A.-S.F., Eied, A.A.: Entanglement in a system of an \(\Xi \)-type three-level atom interacting with a non-correlated two-mode cavity field in the presence of nonlinearities. Opt. Commun. 282, 2184 (2009)

    Article  ADS  Google Scholar 

  45. El-Deberky, M.A.A.: The dynamical effect of stark-shifts produced from a four-level atomic system. Int. J. Phys. Sci. 4, 253 (2009)

    Google Scholar 

  46. Abdel-Wahab, N.H.: A moving four-level N-type atom interacting with cavity fields. J. Phys. B: At. Mol. Opt. Phys. 41, 105502 (2008)

    Article  ADS  Google Scholar 

  47. Tavis, M., Cummings, F.W.: Exact Solution for an -Molecule-Radiation-Field Hamiltonian. Phys. Rev 170, 379 (1968)

    Article  ADS  Google Scholar 

  48. Brune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Raimond, J.M., Haroche, S.: Exact Solution for an -Molecule-Radiation-Field Hamiltonian. Phys. Rev. Lett. 76, 1800 (1996)

    Article  ADS  MATH  Google Scholar 

  49. Rempe, G., Walter, H., Klein, N.: Microlaser: A laser with one atom in an optical resonator. Phys. Rev. Lett. 58, 353 (2000)

    Article  ADS  Google Scholar 

  50. Schmidt-Kaler, F., Maali, A., Dreyer, J., Haglet, E., Raimond, J.M., Haroche, S.: Observing the progressive decoherence of the “meter’’ in a quantum measurement. Phys. Rev. Lett. 76, 1800 (1996)

    ADS  MATH  Google Scholar 

  51. Schlicher, R.R.: Jaynes-Cummings model with atomic motion. Opt. Commun. 70, 97 (1989)

    Article  ADS  Google Scholar 

  52. Gea-Banacloche, J.: Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus. Phys. Rev. Lett. 65, 3385 (1990)

    Article  ADS  Google Scholar 

  53. Goldberg, P., Harrison, L.C.: Electric field in the coherent-state Jaynes-Cummings model. Phys. Rev. A 43, 376 (1991)

    Article  ADS  Google Scholar 

  54. Satyanarayana, M.V., Vijayakumar, M., Asling, P.: Glauber-Lachs version of the Jaynes-Cummings interaction of a two-level atom. Phys. Rev. A 45, 5301 (1992)

    Article  ADS  Google Scholar 

  55. Shore, B.W., Knight, P.L.: The jaynes-cummings model. J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Vernooy, D.W., Kimble, J.H.: Well-dressed states for wave-packet dynamics in cavity QED. Phys. Rev. A 56, 4287 (1997)

    Article  ADS  Google Scholar 

  57. Zou, X.-B., Xu, J.-B.: Interaction of a two-level atom with a quantized radiation field in the presence of a gravitational field. Phys. Rev. A 61, 063409 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  58. Doherty, A.C., Lynn, T.W., Hood, C.J., Kimble, H.J.: Trapping of single atoms with single photons in cavity QED. Phys. Rev. A 63, 013401 (2000)

    Article  ADS  Google Scholar 

  59. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragon, J.J.: Oscillations, decay, and recorrelations in a simple quantum model. Sov. J. Quantum Electron 10, 1261 (1981)

    Article  ADS  Google Scholar 

  60. Buek, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. 81A, 132 (1981)

    Article  ADS  Google Scholar 

  61. Sukumar, C.V., Buek, B.: Multi-phonon generalisation of the Jaynes-Cummings model. Phys. Lett. 83A, 211 (1981)

    Article  ADS  Google Scholar 

  62. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  63. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  64. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  65. You, J.Q., Tsai, J.S., Nori, F.: Scalable quantum computing with Josephson charge qubits. Phys. Rev. Lett. 89, 197902 (2002)

    Article  ADS  Google Scholar 

  66. Peøina, J., Haderka, O., Soubusta, J.: Quantum cryptography using a photon source based on postselection from entangled two-photon states. Phys. Rev. A 64, 052305 (2001)

    Article  ADS  Google Scholar 

  67. Recati, A., Calarco, T., Zanardi, P., Cirac, J.I., Zoller, P.: Holonomic quantum computation with neutral atoms. Phys. Rev. A 66, 032309 (2002)

    Article  ADS  Google Scholar 

  68. Li, G.-X., Tan, H., Macovei, M.: Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition. Phys. Rev. A 76, 053827 (2004)

    Article  ADS  Google Scholar 

  69. Li, G.-X., Ke, S., Ficek, Z.: Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity. Phys. Rev. A 79, 033827 (2009)

    Article  ADS  Google Scholar 

  70. Hu, X.M., Zou, J.H.: Quantum-beat lasers as bright sources of entangled sub-Poissonian light. Phys. Rev. A 78, 045801 (2008)

    Article  ADS  Google Scholar 

  71. Li, X., Hu, X.M.: Tripartite entanglement in quantum-beat lasers. Phys. Rev. A 80, 023815 (2009)

    Article  ADS  Google Scholar 

  72. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  73. Deng, Z.J., Feng, M., Gao, K.L.: Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys. Rev. Lett. 75, 024302 (2007)

    ADS  Google Scholar 

  74. Fischer, D.G., Mack, H., Freyberger, M.: Transfer of quantum states using finite resources. Phys. Rev. A 63, 042305 (2001)

    Article  ADS  Google Scholar 

  75. Yönac, Muhammed, Eberly, J.H.: Coherent-state control of noninteracting quantum entanglement. Phys. Rev. A 82, 022321 (2010)

  76. Yönaç, Muhammed, Eberly, Joseph H.: Qubit entanglement driven by remote optical fields. Opt. Lett. 33, 270 (2008)

  77. Blanco, P., Mundarain, D.: Faithful entanglement transference from qubits to continuous variable systems. J. Phys. B: At. Mol. Opt. Phys. 44, 105501 (2011)

    Article  ADS  Google Scholar 

  78. Yao-Hua, Hu., Jun-Qiang, Wang: Quantum correlations between two non-interacting atoms under the influence of a thermal environment. Chin. Phys. B 21, 014203 (2012)

    Article  ADS  Google Scholar 

  79. Son, W., Kim, M.S., Lee, Jinhyoung, Ahn, D.: Entanglement transfer from continuous variables to qubits. J. Mod. Opt. 49, 1739 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Zou, Hong-Mei., Fang, Mao-Fa.: Analytical solution and entanglement swapping of a double Jaynes-Cummings model in non-Markovian environments. Quantum Inf. Proc. 14, 2673 (2015)

    Article  ADS  MATH  Google Scholar 

  81. Chen, Qing-Hu., Yang, Yuan, Liu, Tao, Wang, Ke-Lin.: Entanglement dynamics of two independent Jaynes-Cummings atoms without the rotating-wave approximation. Phys. Rev. A 82, 052306 (2010)

    Article  ADS  Google Scholar 

  82. Chan, Stanley, Reid, M.D., Ficek, Z.: Entanglement evolution of two remote and non-identical Jaynes-Cummings atoms. J. Phys. B: At. Mol. Opt. Phys 42, 065507 (2009)

    Article  ADS  Google Scholar 

  83. Sainz, Isabel, Björk, Gunnar: Entanglement invariant for the double Jaynes-Cummings model. Phys. Rev. A 76, 042313, 052305 (2007)

  84. Lee, Jinhyoung, Paternostro, M., Kim, M.S., Bose, S.: Entanglement reciprocation between qubits and continuous variables. Phys. Rev. Lett 96, 080501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  85. Yönaç, Muhammed, Eberly, Joseph H.: Sudden death of entanglement of two Jaynes-Cummings atoms. J. Phys. B: At. Mol. Opt. Phys. 39, S621 (2006)

  86. Cao, Bao-Liang., Shi, Ying, Jiang, Dong-Guang.: The dynamics of quantum correlations between two atoms in two coupled cavities. Int. J. Theor. Phys. 53, 1920 (2014)

    Article  MATH  Google Scholar 

  87. Bougouffa, Smail, Ficek, Zbigniew: Atoms versus photons as carriers of quantum states. Phys. Rev. A 88, 022317 (2013)

    Article  ADS  Google Scholar 

  88. Trieu, Duong Hai: Dynamics in a system of four qubits in two cavities. J. Phys.: Conf. Ser. 187, 012032 (2009)

    Google Scholar 

  89. Zhang, Ke., Li, Zhi-Yuan.: Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Phys. Rev. A 81, 033843 (2010)

    Article  ADS  Google Scholar 

  90. Enríyquez, Marco, Quintana, Claudia, Rosas-Ortiz, Oscar: Time-evolution of entangled bipartite atomic systems in quantized radiation fields. J. Phys.: Conf. Ser. 512, 012022 (2014)

  91. Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M., Obada, A.-S.F.: Single-Atom Entanglement for a System of Directly Linked Two Cavities in the Presence of an External Classical Field: Effect of Atomic Coherence. Fortschr. Phys. 67, 1800101 (2019)

    Article  MathSciNet  Google Scholar 

  92. Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M., Obada, A.-S.F.: Entanglement dynamics of a dispersive system of two driven qubits localized in coherently two linked optical cavities: two dispersive spatial distant driven Jaynes -Cummings cells. Opt Quant Electron 54, 11 (2022). https://doi.org/10.1007/s11082-021-02964-2

  93. Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M., Obada, A.-S.F.: Quantum entropy of a two-linked Jaynes-Cummings cells for single-excitation quantum states. Modern Physics Letters. 34, 1950093 (2019)

    Google Scholar 

  94. Lü, Xin-You., Si, Liu-Gang., Wang, Meng, Zhang, Su-Zhen., Yang, Xiaoxue: Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction. J. Phys. B: At. Mol. Opt. Phys. 41, 235502 (2008)

  95. Nohama, F.K., Roversi, J.A.: Two-qubit state transfer between trapped ions using electromagnetic cavities coupled by an optical fibre. J. Phys. B: At. Mol. Opt. Phys. 41, 045503 (2008)

    Article  ADS  Google Scholar 

  96. Liao, Chang-Geng., Yang, Zhen-Biao., Luo, Cheng-Li., Chen, Zi-Hong.: Dynamics for two cavity QED systems coupled by an optical fiber. Opt. Commun. 284, 1920 (2011)

    Article  ADS  Google Scholar 

  97. Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M., Obada, A.-S.F.: Collapses-revivals phenomenon of a system of a two-linked cavities in the presence of an external classical field. Phys. E Low Dimens. Syst. Nanostruct. 117, 113163 (2020)

    Article  Google Scholar 

  98. Ogden, C.D., Irish, E.K., Kim, M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A 78, 063805 (2008)

    Article  ADS  Google Scholar 

  99. Khalil, E.M.: Influence of the external classical field on the entanglement of a two-level atom. Int. J. Theor. Phys. 52, 1122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  100. Sebawe Abdalla, M., Obada, A.-S.. F., Khalil, E. M., Ali, S. I.: The influence of phase damping on a two-level atom in the presence of the classical laser field. Laser Phys. 23, 115201 (2013)

    Article  ADS  Google Scholar 

  101. Sebawe Abdalla, M., Obada, A. S. F.: Exact treatment of the Jaynes-Cummings model under the action of an external classical field. Ann. Phys. 326, 2486 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Shen, Li-Tuo., Yang, Zhen-Biao., Huai-Zhi, Wu., Chen, Xin-Yu., Zheng, Shi-Biao.: Control of two-atom entanglement with two thermal fields in coupled cavities. J. Opt. Soc. Am. B 29, 2379 (2012)

    Article  ADS  Google Scholar 

  103. Jun, Peng, Yun-Wen, Wu., Xiao-Juan, Li.: Quantum dynamic behaviour in a coupled cavities system. Chin. Phys. B 21, 060302 (2012)

    Article  Google Scholar 

  104. Louisell, W.H.: Quantum statistical properties of radiation. John Wiley, Sons Canada (1973)

    MATH  Google Scholar 

  105. James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Can. J. Phys 85, 625 (2007)

    Article  ADS  Google Scholar 

  106. Zhang, Ke., Li, Zhi-Yuan.: Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Phys. Rev. A 81, 033843 (2010)

    Article  ADS  Google Scholar 

  107. Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  108. Per̃ina, Jr., Per̃ina, J.: Progress in optics. Elsevier, Amsterdam (2000)

Download references

Acknowledgements

Authors thank Taif University Researchers Supporting Project num- ber (TURSP-2020/17), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hanoura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M. et al. Quantum state transfer by electromagnetic fields initialized in vacuum states in a system comprised of two consecutive cavities connected by an optical fiber in the presence of an external classical field. Quantum Inf Process 21, 205 (2022). https://doi.org/10.1007/s11128-022-03486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03486-w

Keywords

Navigation