Skip to main content
Log in

Quantum partial search algorithm with smaller oracles for multiple target items

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum search is one kind of the most important quantum algorithms, which is the only threat to postquantum cryptography till now. In this paper, we consider the problem of partial searching, where we are interested in part of the information of the item being searched. Then, we present the quantum partial search algorithm with smaller oracles, which reduces the difficulty of designing oracles without errors. The time complexity of this algorithm is smaller than that of the Grover search algorithm in practical instances. Furthermore, we present a punctuated version of the quantum partial search algorithm with smaller oracles to make the algorithm more practical by decreasing the number of iterations further. The punctuated algorithm could be running on several quantum computers in parallel. Taking these factors into consideration, the quantum partial search algorithm with smaller oracles for multiple target items is practical for running on a quantum computer and solving many real problems, such as the Hamiltonian circuit problem and solving systems of nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC ’96: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (1996)

  2. Grover, L.K.: Quantum Mechanics Helps in Searching for a Needle in a Haystack 1997PRL 79,2. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484 (1997)

    Article  MathSciNet  Google Scholar 

  4. Yu, C.H., Gao, F., Liu, C.H., Huynh, D., Reynolds, M., Wang, J.B.: Quantum algorithm for visual tracking. Phys. Rev. A. 99(2), 022301 (2019)

    Article  ADS  Google Scholar 

  5. Yu, C.H., Gao, F., Lin, S., Wang, J.B.: Quantum data compression by principal component analysis. Phys. Rev. A 99(2), 022301 (2019)

    Article  ADS  Google Scholar 

  6. Yu, C.H., Gao, F., Wen, Q.Y.: An improved quantum algorithm for ridge regression. IEEE Trans. Knowl. Data Eng. 33, 858–866 (2021)

    Google Scholar 

  7. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high dimensional system. Quantum Inf. Process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, D., Yang, Y.G., Bi, J.L., Yuan, J.B., Xu, J.: Controlled alternate quantum walks based quantum hash function. Sci. Rep. 8, 225 (2018)

    Article  ADS  Google Scholar 

  9. Li, D., Liu, Y., Yang, Y.G., Xu, J., Yuan, J.B.: Szegedy quantum walks with memory on regular graphs. Quantum Inf. Process. 19, 32 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Pellet-Mary, A., Stehle, D.: On the Hardness of the NTRU Problem. In: Tibouchi M., Wang H. (eds) Advances in Cryptology, ASIACRYPT 2021. Lecture Notes in Computer Science, vol. 13090. Springer, Cham. (2021)

  11. Buchmann, J., Dahmen, E., Hulsing, A.: XMSS - A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions. In: Yang BY. (eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science, vol. 7071. Springer, Berlin (2011)

  12. Chen, L., Jordan, S., Liu, Y., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D.: Report on Post-Quantum Cryptography. MD, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg (2016)

  13. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algorithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf. Process. 17, 339 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC arXiv:1910.01700 [quant-ph] (2019)

  15. Korepin, V.E., Grover, L.K.: Simple algorithm for partial quantum search 2005. Quantum Inf. Process. 5, 5–10 (2006)

    Article  MathSciNet  Google Scholar 

  16. Grover, L.K., Radhakrishnan, J.: Is partial quantum search of a database any easier. arXiv:quant-ph/0407122 (2004)

  17. Choi, B.S., Korepin, V.E.: Quantum partial search of a database with several target items 2007. Quantum Inf. Process. 6, 243 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhang, K., Korepin, V.: Quantum partial search for uneven distribution of multiple target items2018. Quantum Inf. Process. 17, 143 (2018)

    Article  ADS  Google Scholar 

  19. Zhang, K., Korepin, V.E.: Depth optimization of quantum search algorithms beyond Grover’ algorithm. Phys. Rev. A 101, 032346 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Farhi, E., Gutmann, S.: Quantum Mechanical Square Root Speedup in a Structured Search Problem. arXiv:9771.1035 [quant-ph] (1997)

  21. Wong, T.G., Wunscher, K., Lockhart, J., Severini, S.: Quantum walk search on Kronecker graphs. Phys. Rev. A 98, 012338 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, Y.K., Wu, S.J., Wang, W.: Controlled quantum search on structured databases. Phys. Rev. Res. 1, 033016 (2019)

    Article  Google Scholar 

  23. Xue, X.L., Ruan, Y., Liu, Z.H.: Discrete-time quantum walk search on Johnson graphs. Quantum Inf. Process. 18, 50 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Rhodes, M.L., Wong, T.G.: Quantum walk search on the complete Bipartite graph. Phys. Rev. A 99, 032301 (2019)

    Article  ADS  Google Scholar 

  25. Figgatt, C., Maslov, D., Landsman, K., Linke, N.M., Debnath, S., Monroe, C.: Complete 3-Qubit Grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017)

    Article  ADS  Google Scholar 

  26. Boyer, M., Brassard, G., Hoyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik Progress Phys. 46(493), 032301, (1998)

  27. Gingrich, R.M., Williams, C.P., Cerf, N.J.: Generalized quantum search with parallelism. Phys. Rev. A 61, 052313 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61701229, 61901218, 62071015), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190407), China Postdoctoral Science Foundation funded Project (Grant Nos. 2018M630557, 2018T110499), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1701139B), the Beijing Natural Science Foundation (Grant No. 4162005) and the Open Fund of the State Key Laboratory of Cryptology (Grant No. MMKFKT201914).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Li or Yu-Qian Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Qian, L., Zhou, YQ. et al. Quantum partial search algorithm with smaller oracles for multiple target items. Quantum Inf Process 21, 160 (2022). https://doi.org/10.1007/s11128-022-03496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03496-8

Keywords

Navigation