Abstract
Just recently, complementarity relations (CRs) have been derived from the basic rules of Quantum Mechanics. The complete CRs are equalities involving quantum coherence, C, quantum entanglement, and predictability, P. While the first two are already quantified in the resource theory framework, such a characterization lacks for the last. In this article, we start showing that, for a system prepared in a state \(\rho \), P of \(\rho \), with reference to an observable X, is equal to C, with reference to observables mutually unbiased (MU) to X, of the state \(\Phi _{X}(\rho )\), which is obtained from a non-revealing von Neumann measurement (NRvNM) of X. We also show that \(P^X(\rho )>C^{Y}(\Phi _{X}(\rho ))\) for observables X, Y not MU. Afterwards, we provide quantum circuits for implementing NRvNMs and use these circuits to experimentally test these (in)equalities using the IBM’s quantum computers. Furthermore, we give a resource theory for predictability, identifying its free quantum states and free quantum operations and discussing some predictability monotones. Besides, after applying one of these predictability monotones to study bipartite systems, we discuss the relation among the resource theories of quantum coherence, predictability, and purity.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580 (1928)
Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)
Lévy-Leblond, J.-M.: On the Nature of Quantons. Sci. Educ. 12, 495 (2003)
Wootters, W.K., Zurek, W.H.: Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473 (1979)
Greenberger, D.M., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391 (1988)
Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)
Jaeger, G., Shimony, A., Vaidman, L.: Two interferometric complementarities. Phys. Rev. A 51, 54 (1995)
Angelo, R.M., Ribeiro, A.D.: Wave-particle duality: an information-based approach. Found. Phys. 45, 1407 (2015)
Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)
Coles, P.J.: Entropic framework for wave-particle duality in multipath interferometers. Phys. Rev. A 93, 062111 (2016)
Bagan, E., Calsamiglia, J., Bergou, J.A., Hillery, M.: Duality games and operational duality relations. Phys. Rev. Lett. 120, 050402 (2018)
Roy, P., Qureshi, T.: Path predictability and quantum coherence in multi-slit interference. Phys. Scr. 94, 095004 (2019)
Basso, M.L.W., Chrysosthemos, D.S.S., Maziero, J.: Quantitative wave-particle duality relations from the density matrix properties. Quant. Inf. Process. 19, 254 (2020)
Lü, X.: Quantitative wave-particle duality as quantum state discrimination. Phys. Rev. A 102, 022201 (2020)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)
Mishra, S., Venugopalan, A., Qureshi, T.: Decoherence and visibility enhancement in multi-path interference. Phys. Rev. A 100, 042122 (2019)
Dürr, S.: Quantitative wave-particle duality in multibeam interferometers. Phys. Rev. A 64, 042113 (2001)
Englert, B.-G., Kaszlikowski, D., Kwek, L.C., Chee, W.H.: Wave-particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quantum Inf. 6, 129 (2008)
Jakob, M., Bergou, J.A.: Quantitative complementarity relations in bipartite systems: Entanglement as a physical reality. Opt. Comm. 283, 827 (2010)
Basso, M.L.W., Maziero, J.: Complete complementarity relations for multipartite pure states. J. Phys. A: Math. Theor. 53, 465301 (2020)
Basso, M.L.W., Maziero, J.: An uncertainty view on complementarity and a complementarity view on uncertainty. Quantum Inf. Process. 20, 201 (2021)
Basso, M.L.W., Maziero, J.: Entanglement Monotones from Complementarity Relations. arXiv:2012.14471 [quant-ph] (2021)
Qian, X.-F., Konthasinghe, K., Manikandan, K., Spiecker, D., Vamivakas, A.N., Eberly, J.H.: Turning off quantum duality. Phys. Rev. Res. 2, 012016 (2020)
Qureshi, T.: Predictability, distinguishability and entanglement. Opt. Lett. 46, 492 (2021)
Basso, M.L.W., Maziero, J.: Entanglement monotones connect distinguishability and predictability. Phys. Lett. A 425, 127875 (2021)
Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003)
Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)
Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)
Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)
Amaral, B.: Resource theory of contextuality. arXiv:1904.04182 (2019)
Martins, E., Savi, M.F., Angelo, R.M.: Quantum incompatibility of a physical context. Phys. Rev. A 102, 050201(R) (2020)
Costa, A.C.S., Angelo, R.M.: Information-based approach towards a unified resource theory. Quantum Inf. Process. 19, 325 (2020)
Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)
Liu, Z.-W., Hu, X., Lloyd, S.: Resource-destroying maps. Phys. Rev. Lett. 118, 060502 (2017)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics, vol. I. Wiley, London (1991)
Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
IBM Quantum. https://quantum-computing.ibm.com/
Maziero, J.: Computing partial traces and reduced density matrices. Int. J. Mod. Phys. C 28, 1750005 (2017)
Pozzobom, M.B., Maziero, J.: Preparing tunable Bell-diagonal states on a quantum computer. Quantum Inf. Process. 18, 142 (2019)
Pozzobom, M.B., Basso, M.L.W., Maziero, J.: Experimental tests of the density matrix’s property-based complementarity relations. Phys. Rev. A 103, 022212 (2021)
Wieśniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New J. Phys. 13, 053047 (2011)
Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)
Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer, New York (1975)
Dieguez, P.R., Angelo, R.M.: Information-reality complementarity: the role of measurements and quantum reference frames. Phys. Rev. A 97, 022107 (2018)
Arsenijevic, M., Jeknic-Dugic, J., Dugic, M.: Generalized Kraus operators for the one-qubit depolarizing quantum channel. Braz. J. Phys. 47, 339–349 (2017)
Kimura, G.: The bloch vector for N-level systems. Phys. Lett. A 314, 339 (2003)
Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A: Math. Theor. 41, 235303 (2008)
Savi, M.F., Angelo, R.M.: Quantum resource covariance. Phys. Rev. A 103, 022220 (2021)
Acknowledgements
This work was supported by Universidade Federal do ABC (UFABC), process 23006.000123/2018-23, and by the Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 465469/2014-0. We thank Renato Moreira Angelo for the question we answered in this article and for illuminating conversations. We also thank Alexandre Camacho Orthey Junior for discussions regarding the implementation of local non-revealing von Neumann measurements through global unitaries.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Basso, M.L.W., Maziero, J. Predictability as a quantum resource. Quantum Inf Process 21, 187 (2022). https://doi.org/10.1007/s11128-022-03503-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03503-y