Skip to main content
Log in

Predictability as a quantum resource

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Just recently, complementarity relations (CRs) have been derived from the basic rules of Quantum Mechanics. The complete CRs are equalities involving quantum coherence, C, quantum entanglement, and predictability, P. While the first two are already quantified in the resource theory framework, such a characterization lacks for the last. In this article, we start showing that, for a system prepared in a state \(\rho \), P of \(\rho \), with reference to an observable X, is equal to C, with reference to observables mutually unbiased (MU) to X, of the state \(\Phi _{X}(\rho )\), which is obtained from a non-revealing von Neumann measurement (NRvNM) of X. We also show that \(P^X(\rho )>C^{Y}(\Phi _{X}(\rho ))\) for observables XY not MU. Afterwards, we provide quantum circuits for implementing NRvNMs and use these circuits to experimentally test these (in)equalities using the IBM’s quantum computers. Furthermore, we give a resource theory for predictability, identifying its free quantum states and free quantum operations and discussing some predictability monotones. Besides, after applying one of these predictability monotones to study bipartite systems, we discuss the relation among the resource theories of quantum coherence, predictability, and purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580 (1928)

    Article  ADS  MATH  Google Scholar 

  2. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  3. Lévy-Leblond, J.-M.: On the Nature of Quantons. Sci. Educ. 12, 495 (2003)

    Article  MATH  Google Scholar 

  4. Wootters, W.K., Zurek, W.H.: Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473 (1979)

    Article  ADS  Google Scholar 

  5. Greenberger, D.M., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391 (1988)

    Article  ADS  Google Scholar 

  6. Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  7. Jaeger, G., Shimony, A., Vaidman, L.: Two interferometric complementarities. Phys. Rev. A 51, 54 (1995)

    Article  ADS  Google Scholar 

  8. Angelo, R.M., Ribeiro, A.D.: Wave-particle duality: an information-based approach. Found. Phys. 45, 1407 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  10. Coles, P.J.: Entropic framework for wave-particle duality in multipath interferometers. Phys. Rev. A 93, 062111 (2016)

    Article  ADS  Google Scholar 

  11. Bagan, E., Calsamiglia, J., Bergou, J.A., Hillery, M.: Duality games and operational duality relations. Phys. Rev. Lett. 120, 050402 (2018)

    Article  ADS  MATH  Google Scholar 

  12. Roy, P., Qureshi, T.: Path predictability and quantum coherence in multi-slit interference. Phys. Scr. 94, 095004 (2019)

    Article  ADS  Google Scholar 

  13. Basso, M.L.W., Chrysosthemos, D.S.S., Maziero, J.: Quantitative wave-particle duality relations from the density matrix properties. Quant. Inf. Process. 19, 254 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lü, X.: Quantitative wave-particle duality as quantum state discrimination. Phys. Rev. A 102, 022201 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  16. Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)

    Article  ADS  Google Scholar 

  17. Mishra, S., Venugopalan, A., Qureshi, T.: Decoherence and visibility enhancement in multi-path interference. Phys. Rev. A 100, 042122 (2019)

    Article  ADS  Google Scholar 

  18. Dürr, S.: Quantitative wave-particle duality in multibeam interferometers. Phys. Rev. A 64, 042113 (2001)

    Article  ADS  Google Scholar 

  19. Englert, B.-G., Kaszlikowski, D., Kwek, L.C., Chee, W.H.: Wave-particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quantum Inf. 6, 129 (2008)

    Article  MATH  Google Scholar 

  20. Jakob, M., Bergou, J.A.: Quantitative complementarity relations in bipartite systems: Entanglement as a physical reality. Opt. Comm. 283, 827 (2010)

    Article  ADS  Google Scholar 

  21. Basso, M.L.W., Maziero, J.: Complete complementarity relations for multipartite pure states. J. Phys. A: Math. Theor. 53, 465301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Basso, M.L.W., Maziero, J.: An uncertainty view on complementarity and a complementarity view on uncertainty. Quantum Inf. Process. 20, 201 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. Basso, M.L.W., Maziero, J.: Entanglement Monotones from Complementarity Relations. arXiv:2012.14471 [quant-ph] (2021)

  24. Qian, X.-F., Konthasinghe, K., Manikandan, K., Spiecker, D., Vamivakas, A.N., Eberly, J.H.: Turning off quantum duality. Phys. Rev. Res. 2, 012016 (2020)

    Article  Google Scholar 

  25. Qureshi, T.: Predictability, distinguishability and entanglement. Opt. Lett. 46, 492 (2021)

    Article  ADS  Google Scholar 

  26. Basso, M.L.W., Maziero, J.: Entanglement monotones connect distinguishability and predictability. Phys. Lett. A 425, 127875 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

  31. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)

    Article  ADS  Google Scholar 

  34. Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    Article  ADS  Google Scholar 

  35. Amaral, B.: Resource theory of contextuality. arXiv:1904.04182 (2019)

  36. Martins, E., Savi, M.F., Angelo, R.M.: Quantum incompatibility of a physical context. Phys. Rev. A 102, 050201(R) (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. Costa, A.C.S., Angelo, R.M.: Information-based approach towards a unified resource theory. Quantum Inf. Process. 19, 325 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Liu, Z.-W., Hu, X., Lloyd, S.: Resource-destroying maps. Phys. Rev. Lett. 118, 060502 (2017)

    Article  ADS  Google Scholar 

  40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  41. Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics, vol. I. Wiley, London (1991)

    MATH  Google Scholar 

  42. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  43. IBM Quantum. https://quantum-computing.ibm.com/

  44. Maziero, J.: Computing partial traces and reduced density matrices. Int. J. Mod. Phys. C 28, 1750005 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. Pozzobom, M.B., Maziero, J.: Preparing tunable Bell-diagonal states on a quantum computer. Quantum Inf. Process. 18, 142 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. Pozzobom, M.B., Basso, M.L.W., Maziero, J.: Experimental tests of the density matrix’s property-based complementarity relations. Phys. Rev. A 103, 022212 (2021)

    Article  ADS  Google Scholar 

  47. Wieśniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New J. Phys. 13, 053047 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  49. Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer, New York (1975)

    Book  MATH  Google Scholar 

  50. Dieguez, P.R., Angelo, R.M.: Information-reality complementarity: the role of measurements and quantum reference frames. Phys. Rev. A 97, 022107 (2018)

    Article  ADS  Google Scholar 

  51. Arsenijevic, M., Jeknic-Dugic, J., Dugic, M.: Generalized Kraus operators for the one-qubit depolarizing quantum channel. Braz. J. Phys. 47, 339–349 (2017)

    Article  ADS  MATH  Google Scholar 

  52. Kimura, G.: The bloch vector for N-level systems. Phys. Lett. A 314, 339 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A: Math. Theor. 41, 235303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Savi, M.F., Angelo, R.M.: Quantum resource covariance. Phys. Rev. A 103, 022220 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidade Federal do ABC (UFABC), process 23006.000123/2018-23, and by the Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 465469/2014-0. We thank Renato Moreira Angelo for the question we answered in this article and for illuminating conversations. We also thank Alexandre Camacho Orthey Junior for discussions regarding the implementation of local non-revealing von Neumann measurements through global unitaries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos L. W. Basso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, M.L.W., Maziero, J. Predictability as a quantum resource. Quantum Inf Process 21, 187 (2022). https://doi.org/10.1007/s11128-022-03503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03503-y

Keywords