Skip to main content
Log in

(In)significance of entangling operators in the noisy duopoly games

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we extend the application of the recently proposed modified EWL scheme to study Cournot and Stackelberg duopoly games in the presence of decoherence. It is shown that the effect of decoherence in the duopoly games can be tuned with an appropriate choice of entangling operator, initial state, and strategies adapted by the firms. We have observed three interesting situations for the noisy Cournot and Stackelberg duopoly games: Firstly, when noise is maximum the profit function of the firms becomes independent of the entangling operator. Secondly, entanglement decides the outcome of the firms only when players adapt different strategies. Thirdly, the outcome of the firms can be made equal when the strategies of the firms are interchanged. Further, it is shown that noise favors the follower over the leader by decreasing the difference in the profit function of the firms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1992)

    MATH  Google Scholar 

  2. Osborne, M.J.: An Introduction to Game theory. Oxford University Press, New York (2004)

    Google Scholar 

  3. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  4. Nash, J.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36(1), 48–49 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  5. Colman, A.M.: Game Theory and its Applications in the Social and Biological Sciences. Butterworth-Heinemam, Oxford (1995)

    Google Scholar 

  6. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Khan, F.S., Solmeyer, N., Balu, R., et al.: Quantum games: a review of the history, current state, and interpretation. Quant. Info. Process. 17, 309 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Vijayakrishnan, V., Balakrishnan, S.: Role of two-qubit entangling operators in the modified Eisert–Wilkens–Lewenstein approach of quantization. Quant. Info. Process. 18, 112 (2019)

    Article  ADS  Google Scholar 

  11. Vijayakrishnan, V., Balakrishnan, S.: Significance of entangling operators in the purview of modified EWL scheme. Quant. Info. Process. 19, 315 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kameshwari, A.V.S., Balakrishnan, S.: Cournot and Stackelberg duopoly games in the purview of modified EWL scheme. Quant. Info. Process. 20, 337 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gibbons, R.: Game Theory for Applied Economists. Princeton University Press, Oxford (1992)

    Book  Google Scholar 

  14. Cournot, A.: Researches Into the Mathematical Principles of the Theory of Wealth, Edited by N. Bacon. Macmillan, New York (1897)

  15. Stackelberg, H.V.: Marktform und Gleichgewicht. Julius Springer, Vienna (1934)

    MATH  Google Scholar 

  16. Li, H., Du, J., Massar, S.: Continuous-variable quantum games. Phys. Letts. A 306, 73–78 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly. Phys. Lett. A 318, 333–336 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly with incomplete information. Phys. Lett. A 346, 65–70 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Iqbal, A., Toor, A.H.: Backward-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)

    Article  ADS  Google Scholar 

  20. Frackiewicz, P.: Remarks on quantum duopoly schemes. Quant. Info. Process. 15, 121–136 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Frackiewicz, P.: On subgame perfect equilibria in quantum Stackelberg duopoly with incomplete information. Phys. Letts. A 382, 3463–3469 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Frackiewicz, P.: Quantum approach to cournot-type competition. Int. J. Theor. Phys. 57, 353–362 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zhu, X., Kuang, L.M.: The influence of entanglement and decoherence on the quantum Stackelberg duopoly game. J. Phys. A Math. Theor. 40(27), 7729 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Xia, Z., Le-Man, K.: Quantum Stackelberg duopoly game in depolarizing channel. Commun. Theor. Phys. 49(1), 111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Khan, S., Ramzan, M., Khan, M.K.: Quantum Stackelberg duopoly in the presence of correlated noise. J. Phys. A Math. Theor. 43, 375301 (2010)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., Vala, J., Whaley, K.B., Sastry, S.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rezakhani, A.T.: Characterization of two-qubit perfect entanglers. Phys. Rev. A 70, 052313 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  29. Chen, L.K., Ang, H., Kiang, D., Kwek, L.C., Lo, C.F.: Quantum prisoner dilemma under decoherence. Phys. Letts. A 316, 317–323 (2003)

    Article  ADS  Google Scholar 

  30. Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38, 449 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Khan, S., Ramzan, M., Khan, M.K.: Quantum Parrondo’s game under decoherence. Int. J. Theor. Phys. 49, 31 (2010)

    Article  MathSciNet  Google Scholar 

  32. Sankrith, S., Dave, B., Balakrishnan, S.: Significance of entangling operators in quantum two penny flip game. Braz. J. Phys. 49(6), 859–863 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge the anonymous reviewers for pointing out the correct method of the calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameshwari, A.V.S., Balakrishnan, S. (In)significance of entangling operators in the noisy duopoly games. Quantum Inf Process 21, 168 (2022). https://doi.org/10.1007/s11128-022-03509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03509-6

Keywords

Navigation