Skip to main content
Log in

Monte Carlo-based security analysis for multi-mode continuous-variable quantum key distribution over underwater channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

With the booming development and application of ocean exploration and investigation, it has become more and more important to achieve underwater communications for the establishment of global networks. This paper deals with a Monte Carlo-based performance analysis on multi-mode continuous-variable quantum key distribution over underwater links, where Monte Carlo model can characterize the complex probability density of underwater components. Compared with previous studies carried out in single-mode setting, the multi-mode protocol admits higher secret key rate. Last but not least, using non-Gaussian operations, we further improve the performance of multi-mode protocol, since it increases and distills entanglement in Gaussian entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595–604 (2015)

    Article  ADS  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  3. Pomerene, A., Starbuck, A.L., Lentine, A.L., Long, C.M., Derose, C.T., Trotter, D.C.: Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution. Opt. Express 25, 12282 (2017)

    Article  ADS  Google Scholar 

  4. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  5. Zhang, G., Haw, J.Y., Cai, H., Xu, F., Assad, S.M., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Ser, W., Kwek, L.C., Liu, A.Q.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 9, 1–4 (2019)

    Google Scholar 

  6. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76, 052323 (2007)

    Article  ADS  Google Scholar 

  7. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S.L., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397–402 (2015)

    Article  ADS  Google Scholar 

  8. Weedbrook, C., Pirandola, S., Garcá-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  9. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  10. Huang, D., Huang, P., Lin, D.K., Zeng, G.H.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  11. Lodewyck, J., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Controlling excess noise in fiber-optics continuous-variable quantum key distribution. Phys. Rev. A 72, 050303 (2005)

    Article  ADS  Google Scholar 

  12. Usenko, V.C., Peuntinger, C., Heim, B., Gunthner, K., Derkach, I., Elser, D., Marquardt, C., Filip, R., Leuchs, G.: Stabilization of transmittance fluctuations caused by beam wandering in continuous-variable quantum communication over free-space atmospheric channels. Opt. Express 26, 31106–31115 (2018)

    Article  ADS  Google Scholar 

  13. Hosseinidehaj, N., Babar, Z., Malaney, R., Ng, S.X., Hanzo, L.: Satellite-based continuous-variable quantum communications: State-of-the-art and a predictive outlook. IEEE Commun. Surv. Tutor. 21, 881–919 (2019)

    Article  Google Scholar 

  14. Hill, A.D., Christensen, B., Kwiat, P.G.: Advanced techniques for free-space optical quantum cryptography over water. SPIE 9739, 973911 (2016)

    ADS  Google Scholar 

  15. Shi, P., Zhao, S.C., Gu, Y.J., Li, W.D.: Channel analysis for single photon underwater free space quantum key distribution. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 32, 349–356 (2015)

    Article  ADS  Google Scholar 

  16. Li, D.D., Shen, Q., Chen, W., Li, Y., Han, X., Yang, K.X., Xu, Y., Lin, J., Wang, C.Z., Yong, H.L., et al.: Proof-of-principle demonstration of quantum key distribution with seawater channel: Towards space-to-underwater quantum communication. Opt. Commun. 452, 220–226 (2019)

    Article  ADS  Google Scholar 

  17. Ji, L., Gao, J., Yang, A.L., Feng, Z., Lin, X.F., Li, Z.G., Jin, X.M.: Towards quantum communications in free-space seawater. Opt. Express 25, 19795–19806 (2017)

    Article  ADS  Google Scholar 

  18. Ruan, X.C., Zhang, H., Zhao, W., Wang, X., Li, X., Guo, Y.: Security analysis of discrete-modulated continuous-variable quantum key distribution over seawater channel. Appl. Sci. 9, 4956 (2019)

    Article  Google Scholar 

  19. Guo, Y., Xie, C.L., Huang, P., Li, J., Zhang, L., Huang, D., Zeng, G.H.: Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Phys. Rev. A 97, 052326 (2018)

    Article  ADS  Google Scholar 

  20. Mao, Y., Wu, X., Huang, W., Liao, Q., Guo, Y.: Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution. Appl. Sci. 10, 5744 (2020)

    Article  Google Scholar 

  21. He, M.J., Malaney, R., Green, J.: Multimode CV-QKD with non-gaussian operations. Quantum Eng. 2(2), 40 (2020)

    Article  Google Scholar 

  22. Usenko, V.C., Ruppert, L., Filip, R.: Entanglement-based CV-QKD with multimode states and detectors. Phys. Rev. A 90, 062326 (2014)

    Article  ADS  Google Scholar 

  23. Christ, A., Lupo, C., Silberhorn, C.: Exponentially enhanced quantum communication rate by multiplexing continuous-variable teleportation. New J. Phys. 14, 083007 (2012)

    Article  ADS  Google Scholar 

  24. Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)

    Article  ADS  Google Scholar 

  25. Yang, Y., Li, F.L.: Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 80, 022315 (2009)

    Article  ADS  Google Scholar 

  26. Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Non classicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805 (2005)

    Article  ADS  Google Scholar 

  27. Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J.: A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 19, 204–238 (2016)

    Article  Google Scholar 

  28. Kraemer, R.M., Pessoa, L.M., Salgado, H.M.: Monte Carlo radiative transfer modeling of underwater channel. Wireless Mesh networks-security, architectures and protocols, IntechOpen, London (2019)

    Google Scholar 

  29. Kong, M.W., Wang, J.L., Chen, Y.F., Ali, T., Sarwar, R., Qiu, Y., Wang, S.L., Han, J., Xu, J.: Security weaknesses of underwater wireless optical communication. Opt. Express 25, 21509–21518 (2017)

    Article  ADS  Google Scholar 

  30. Li, J., Ma, Y., Zhou, Q.Q., Zhou, B., Wang, H.Y.: Monte Carlo study on pulse response of underwater optical channel. Opt. Eng. 51, 066001 (2012)

    Article  ADS  Google Scholar 

  31. Gabriel, C., Khalighi, M.A., Bourennane, S., Léon, P., Rigaud, V.: Monte-Carlo-Based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 5, 1–12 (2013)

    Article  Google Scholar 

  32. Cox, W.C.: Simulation, modeling, and design of underwater optical communication systems. Ph. D. Thesis, North Carolina State University, Raleigh, NC (2012)

  33. He, M., Malaney, R., Barnett, B.: Multi-mode CV-QKD with noiseless attenuation and amplification, arXiv:2006.02094 (2020)

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant Nos. 61872390, 61972418), the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20210250), the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2021zzts0202), the Outstanding Youth Program of Education Department of Hunan (Grant No. 21B0228), and the Changsha Municipal Natural Science Foundation (Grant No. kq2202293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The radiative transfer equation describing the propagation behavior of light can be defined as [20, 31]

$$\begin{aligned} \frac{dL(z,\theta ,\phi ,\lambda )}{dr}=-c(\lambda )L(z,\theta ,\phi ,\lambda )+L^E+L^I . \end{aligned}$$
(18)

Here, \(L(z,\theta ,\phi ,\lambda )\) denotes the light radiance at a point, z denotes the distance of the point from the transmitter, \(\theta \) denotes the polar angles, \(\phi \) denotes the azimuthal angles, \(\lambda \) is the wavelength of the light, and r is the radial distance to the source with the notation \(r=\frac{z}{\mathrm {cos}\theta }\). The three terms on the right side of Eq. (18) represent the annihilation photons from the beam, the elastic scattering and the inelastic scattering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Shi, R., Ruan, X. et al. Monte Carlo-based security analysis for multi-mode continuous-variable quantum key distribution over underwater channel. Quantum Inf Process 21, 186 (2022). https://doi.org/10.1007/s11128-022-03533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03533-6

Keywords

Navigation