Abstract
It is a fundamental cryptographic capability to establish multipartite anonymous entanglement among multiple parties in future quantum networks, which can be then exploited for further multiparty communication tasks such as conference key agreement, secret sharing or else. Here, we present a practical approach to create multiparty anonymous entanglement without multipartite entanglement. It exploits a measurement-device-independent architecture and naturally removes all detector side channels. We prove its security and compare its performance with the approach based on multipartite Greenberger–Horne–Zeilinger (GHZ) entanglement over certain types of noisy channels. It paves a way for practical multiparty anonymous quantum communication.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data that support the findings of this study are available upon reasonable request from the authors.
References
Christandl, M., Wehner, S.: Quantum anonymous transmissions. In Advances in Cryptology-ASIACRYPT 2005, edited by B. Roy (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 217–235.
Greenberger, D. M., Horne, M. A., and Zeilinger, A.: In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989), pp. 69–72.
Brassard, G., Broadbent, A., Fitzsimons, J., Gambs, S., and Tapp, A.: Anonymous quantum communication. In Advances in Cryptology-ASIACRYPT 2007, edited by K. Kurosawa (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), pp. 460–473.
Unnikrishnan, A., MacFarlane, Ian J., Yi, R., et al.: Anonymity for practical quantum networks. Phys. Rev. Lett. 122, 240501 (2019)
Pappa, A., Chailloux, A., Wehner, S., et al.: Multipartite entanglement verification resistant against dishonest parties. Phys. Rev. Lett. 108, 260502 (2012)
McCutcheon, W., Pappa, A., Bell, B.A., et al.: Experimental verification of multipartite entanglement in quantum networks. Nat. Commun. 7, 13251 (2016)
Yang, Y.-G., Yang, Y.-L., Lv, X.-L., et al.: Examining the correctness of anonymity for practical quantum networks. Phys. Rev. A 101, 062311 (2020)
Lipinska, V., Murta, G., Wehner, S.: Anonymous transmission in a noisy quantum network using the W state. Phys. Rev. A 98, 052320 (2018)
Yang, W., Huang, L., Song, F.: Privacy preserving quantum anonymous transmission via entanglement relay. Sci. Rep. 6, 26762 (2016)
Hahn, F., de Jong, J., Pappa, A.: Anonymous quantum conference key agreement. PRX Quantum 1, 020325 (2020)
Proietti, M., Ho, J., Grasselli, F., et al.: Experimental quantum conference key agreement. Sci. Adv. 7, 0395 (2021)
Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)
Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Broadbent, A., Tapp, A.: Information-theoretic security without an honest majority. In: Advances in Cryptology-ASIACRYPT 2007, edited by K. Kurosawa, LNCS, Vol. 4833 (Springer, Berlin, Heidelberg, 2007), pp. 410–426.
Gao, Z.-K., Li, T., Li, Z.-H.: Deterministic measurement-device-independent quantum secret sharing. Sci. Chin. Phys. Mech. Astron. 63, 120311 (2020)
Li, T., Miranowicz, A., Xia, K., et al.: Resource-efficient analyzer of Bell and Greenberger-Horne-Zeilinger states of multiphoton systems. Phys. Rev. A 100, 052302 (2019)
Pan, J.-W., Zeilinger, A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)
Xia, Y., Chen, Q.-Q., Song, J., Song, H.-S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029–1037 (2012)
Watrous, J.: The theory of quantum information. Cambridge University Press, UK (2018)
Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)
Cao, C., Zhang, L., Han, Y.H., et al.: Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Opt. Express 28(3), 2857–2872 (2020)
Han, Y.-H., Cao, C., Fan, L., et al.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. J. Opt. Soc. Am. B 38(5), 1593–1603 (2021)
Gillett, G.G., Dalton, R.B., Lanyon, B.P., et al.: Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 080503 (2010)
Cao, C., Wang, C., He, L.-Y., et al.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21(4), 4093–4105 (2013)
Cao, C., Fan, L., Chen, X., et al.: Efficient entanglement concentration of arbitrary unknown less-entangled three-atom W states via photonic Faraday rotation in cavity QED. Quantum Inf. Process. 16, 98 (2017)
Cao, C., Chen, X., Duan, Y., et al.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. Astron. 59, 100315 (2016)
Yin, P.P., Cao, C., Han, Y.H., et al.: Faithful quantum entanglement purification and concentration using heralded high-fidelity parity-check detectors based on quantum-dot-microcavity systems. Quantum Inf. Process. 21(1), 17 (2022)
Yang, Y.-G., Liu, X.-X., Gao, S., et al.: Towards practical anonymous quantum communication: A measurement-device-independent approach. Phys. Rev. A 104, 052415 (2021)
Cao, C., Duan, Y.W., Chen, X., et al.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931–16946 (2017)
Cao, C., Han, Y.H., Yi, X., et al.: Implementation of a single-photon fully quantum router with cavity QED and linear optics. Opt. Quant. Electron. 53(1), 32 (2021)
Yi, X., Cao, C., Fan, L., et al.: Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform. Quantum Inf. Process. 20(7), 249 (2021)
Yang, Y.-G., Gao, S., Li, D., et al.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. 58(9), 2810–2822 (2019)
Yang, Y.-G., Dong, J.-R., Yang, Y.-L., et al.: High-capacity measurement-device-independent deterministic secure quantum communication. Quantum Inf. Process. 20(6), 203 (2021)
Yang, Y.-G., Wen, Q.-Y.: Threshold quantum secure direct communication without entanglement. Sci. Chin. Ser. G Phys. Astron. 51(2), 176–183 (2008)
Yang, Y.-G., Teng, Y.-W., Chai, H.-P., et al.: Revisiting the security of secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inf. Process. 10(3), 317–323 (2011)
Yang, Y.-G., Chai, H.-P., Teng, Y.-W., et al.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50, 395–400 (2011)
Yang, Y.-G., Lv, X.-L., Gao, S., et al.: Detector-device-independent quantum key agreement based on single-photon Bell state measurement. Int. J. Theor. Phys. 61, 50 (2022)
Yang, Y.-G., Li, B.-R., Li, D., et al.: New quantum key agreement protocols based on Bell states. Quantum Inf. Process. 18(10), 322 (2019)
Yang, Y.-G., Gao, S., Li, D., et al.: Two-party quantum key agreement over a collective noisy channel. Quantum Inf. Process. 18(3), 74 (2019)
Yang, Y.-G., Li, B.-R., Kang, S.-Y., et al.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18(2), 77 (2019)
Yang, Y.-G., Wang, Y.-C., Li, J., et al.: Semi-device-independent quantum key agreement protocol. Quantum Inf. Process. 20(11), 376 (2021)
Cao, W.-F., Yang, Y.-G., Zhou, Y.-H., et al.: New quantum key agreement protocol with five-qubit Brown states. Mod. Phys. Lett. A 34(40), 1950332 (2019)
Yang, Y.-G., Liu, X.-X., Gao, S., et al.: Detector-device-independent quantum secret sharing based on hyper-encoding and single-photon Bell-state measurement. Quantum Eng. 3, e76 (2021)
Yang, Y.-G., Wang, Y.-C., Yang, Y.-L., et al.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. Chin. Phys. Mech. Astron. 64(6), 121–124 (2021)
Yang, Y.-G., Liu, X.-X., Gao, S., et al.: A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing. Quantum Inf. Process. 20, 223 (2021)
Yang, Y.-G., Wang, Y., Chai, H.-P., et al.: Member expansion in quantum (t, n) threshold secret sharing schemes. Opt. Commun. 284(13), 3479–3482 (2011)
Yang, Y.-G., Wang, Y., Teng, Y.-W., et al.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011)
Yang, Y.-G., Chai, H.-P., Wang, Y., et al.: Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci. Chin. Ser. G Phys. Astron. 54(9), 1619–1624 (2011)
Yang, Y.-G., Teng, Y.-W., Chai, H.-P., et al.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)
Yang, Y.-G., Teng, Y.-W., Chai, H.-P., et al.: Fault tolerant quantum secret sharing against collective noise. Phys. Scr. 83(2), 025003 (2011)
Yang, Y.-G., Wen, Q.-Y.: Comment on: "Efficient high-capacity quantum secret sharing with two-photon entanglement". Phys. Lett. A 373(3), 396–398 (2009)
Yang, Y.-G., Jia, X., Wang, H.Y., et al.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)
Yang, Y.-G., Gao, S., Li, D., et al.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(5), 215 (2019)
Cao, W.-F., Yang, Y.-G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)
Yang, Y.-G., Wen, Q.-Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(6), 1249–1254 (2009)
Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)
Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)
Yang, Y.-G., Liu, Z.-C., Li, J., et al.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)
Yang, Y.-G., Lei, H., Liu, Z.-C., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)
Yang, Y.-G., Zhou, Z., Teng, Y.-W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)
Yang, Y.-G., Wen, Q.-Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)
Yang, Y.-G., Wang, Y., Wen, Q.-Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. (Beijing, China) 54(1), 84–88 (2010)
Yang, Y.-G., Wen, Q.-Y.: Economical multiparty simultaneous quantum identity authentication based on Greenberger-Horne-Zeilinger states. Chin. Phys. B 18(8), 3233–3236 (2009)
Yang, Y.-G., Guo, X.-P., Xu, G., et al.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)
Yang, Y.-G., Liu, Z.-C., Li, J., et al.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Ser. G Phys. Astron. 60(12), 120311 (2017)
Yang, Y.-G., Liu, Z.-C., Li, J., et al.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)
Yang, Y.-G., Liu, Z.-C., Chen, X.-B., et al: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15(9), 3833–3840 (2016)
Yang, Y.-G., Sun, S.-J., Xu, P., et al.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)
Yang, Y.-G., Yang, R., Cao, W.-F., et al.: Flexible quantum oblivious transfer. Int. J. Theor. Phys. 56(4), 1286–1297 (2017)
Yang, Y.-G., Sun, S.-J., Pan, Q.-X., et al.: Quantum oblivious transfer based on unambiguous set discrimination. Optik 126(23), 3838–3843 (2015)
Gao, S., Pan, S.J., Yang, Y.G.: Quantum algorithm for kernelized correlation filter. Sci. Chin. Inf. Sci. (2022). https://doi.org/10.1007/s11432-021-3400-3
Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Measurement-device-independent quantum wireless network communication. Quantum Inf. Process. 21, 154 (2022)
Yang, Y.-G., Cao, S.-N., Cao, W.-F., et al.: Generalized teleportation by means of discrete-time quantum walks on N-lines and N-cycles. Mod. Phys. Lett. B 33(06), 1950070 (2019)
Cao, W.-F., Yang, Y.-G., Li, D., et al.: Quantum state transfer on unsymmetrical graphs via discrete-time quantum walk. Mod. Phys. Lett. A 34(38), 1950317 (2019)
Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., et al.: Quantum network communication: A discrete-time quantum-walk approach. Sci. Chin. Inf. Sci. 61, 042501 (2018)
Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Efficient quantum multi-hop communication based on Greenberger-Horne-Zeilinger states and Bell states. Quantum Inf. Process. 20, 189 (2021)
Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. Process. 20, 128 (2021)
Acknowledgements
This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202104); the National Natural Science Foundation of China (Grant Nos. 62071015, 62171264).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, YG., Cao, GD., Huang, RC. et al. Multiparty anonymous quantum communication without multipartite entanglement. Quantum Inf Process 21, 196 (2022). https://doi.org/10.1007/s11128-022-03534-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03534-5