Skip to main content
Log in

Orbital angular momentum-encoded quantum digital signature over atmospheric channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum digital signature (QDS) ensures the integrity of a classical message and the authenticity of its sender based on information-theoretical limits and quantum mechanical mechanisms. The existing polarization-encoded or phase-encoded QDS protocols are susceptible to the interference from non-ideal factors in the quantum channel, resulting in the mismatch of the measurement reference frame. The channel capacities of these protocols are also limited, reducing the practicability of these protocols. To overcome these defects, we present a time-bin orbital angular momentum (OAM)-encoded continuous variable QDS (CVQDS) protocol, which exploits the rotation invariance of the vortex beam in the transmission direction to circumvent the real-time calibration of the reference frame and utilizes the infinite-dimensional eigenstate characteristics of the OAM states to beat the channel capacity limit. Security analysis and numerical simulations show that it is feasible to use this protocol to sign 1-bit message in atmospheric channel, and the channel capacity can be improved by increasing the dimensionality of the OAM code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  1. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:0105032 (2001)

  2. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  3. Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3(1), 1174 (2012)

    Article  ADS  Google Scholar 

  4. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photonics 12(4), 1012–1236 (2020)

    Article  ADS  Google Scholar 

  5. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)

    Article  ADS  Google Scholar 

  6. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)

    Article  ADS  Google Scholar 

  7. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  8. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  9. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)

    Article  ADS  Google Scholar 

  10. Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)

    Article  ADS  Google Scholar 

  11. Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  12. Wang, M.Q., Wang, X., Zhan, T.: An efficient quantum digital signature for classical messages. Quantum Inf. Process. 17, 275 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhang, H., An, X.B., Zhang, C.H., Zhang, C.M., Wang, Q.: High-efficiency quantum digital signature scheme for signing long messages. Quantum Inf. Process. 18(1), 3 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhang, C.H., Zhou, X.Y., Zhang, C.M., Li, J., Wang, Q.: Twin-field quantum digital signatures. Opt. Lett. 46(15), 3757–3760 (2021)

    Article  ADS  Google Scholar 

  15. Croal, C., Peuntinger, C., Heim, B., Khan, I., Marquardt, C., Leuchs, G., Wallden, P., Andersson, E., Korolkova, N.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117(10), 100503 (2016)

    Article  ADS  Google Scholar 

  16. Shang, T., Li, K., Liu, J.W.: Measurement-device independency analysis of continuous-variable quantum digital signature. Entropy 20(4), 291 (2018)

    Article  ADS  Google Scholar 

  17. Thornton, M., Scott, H., Croal, C., Korolkova, N.: Continuous-variable quantum digital signatures over insecure channels. Phys. Rev. A 99(3), 032341 (2019)

    Article  ADS  Google Scholar 

  18. Zhao, W., Shi, R.H., Shi, J.J., Huang, P., Guo, Y., Huang, D.: Multibit quantum digital signature with continuous variables using basis encoding over insecure channels. Phys. Rev. A 103(1), 012410 (2021)

    Article  ADS  Google Scholar 

  19. Zhao, W., Shi, R.H., Shi, J.J., Ruan, X.C., Guo, Y., Huang, D.: Quantum digital signature based on measurement-device-independent continuous-variable scheme. Quantum Inf. Process. 20(7), 222 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhao, W., Shi, R.H., Ruan, X.C.: High-efficiency continuous-variable quantum digital signature protocol for signing multi-bit messages. Laser Phys. Lett. 18(3), 035201 (2021)

    Article  ADS  Google Scholar 

  21. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93(3), 032316 (2016)

    Article  ADS  Google Scholar 

  22. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)

    Article  ADS  Google Scholar 

  23. Yin, H.L., Fu, Y., Liu, H., Tang, Q.J., Wang, J., You, L.X., Zhang, W.J., Chen, S.J., Wang, Z., Zhang, Q., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95(3), 032334 (2017)

    Article  ADS  Google Scholar 

  24. Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41(21), 4883–4886 (2016)

    Article  ADS  Google Scholar 

  25. Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Sasaki, M., Andersson, E., Buller, G.S.: Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution. Sci. Rep. 7, 3235 (2017)

    Article  ADS  Google Scholar 

  26. An, X.B., Zhang, H., Zhang, C.M., Chen, W., Wang, S., Yin, Z.Q., Wang, Q., He, D.Y., Hao, P.L., Liu, S.F., Zhou, X.Y., Guo, G.C., Han, Z.F.: Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. Opt. Lett. 44(1), 139–142 (2019)

    Article  ADS  Google Scholar 

  27. Spedalieri, F.M.: Quantum key distribution without reference frame alignment: exploiting photon orbital angular momentum. Opt. Commun. 260(1), 340–346 (2006)

    Article  ADS  Google Scholar 

  28. Molina-Terriza, G., Torres, J.P., Torner, L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88(1), 013601 (2002)

    Article  ADS  Google Scholar 

  29. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282–286 (2008)

    Article  Google Scholar 

  30. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  31. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 062313 (2013)

    Article  ADS  Google Scholar 

  32. Li, J.L., Wang, C.: Six-state quantum key distribution using photons with orbital angular momentum. Chin. Phys. Lett. 27(11), 110303 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Gibson, G., Courtial, J., Padgett, M.J.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12(22), 5448–5456 (2004)

    Article  ADS  Google Scholar 

  34. Jin, D., Guo, Y., Wang, Y.J., Huang, D.: Parameter estimation of orbital angular momentum based continuous-variable quantum key distribution. J. Appl. Phys. 127(21) (2020)

  35. Ruan, X.C., Shi, W.H., Chen, G.J., Zhao, W., Zhang, H., Guo, Y.: High-rate continuous-variable quantum key distribution with orbital angular momentum multiplexing. Entropy 23(9), 1187 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  36. Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S., Courtial, J.: Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88(25), 257901 (2002)

    Article  ADS  Google Scholar 

  37. Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94(15), 153901 (2005)

    Article  ADS  Google Scholar 

  38. Wang, Z.Q., Malaney, R., Burnett, B.: Satellite-to-earth quantum key distribution via orbital angular momentum. Phys. Rev. Appl. 14(6), 064031 (2020)

    Article  ADS  Google Scholar 

  39. Tyler, G.A., Boyd, R.W.: Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 34(2), 142–144 (2009)

    Article  ADS  Google Scholar 

  40. Wang, X.Y., Zhao, S.H., Dong, C., Zhu, Z.D., Gu, W.Y.: Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf. Process. 18, 304 (2019)

    Article  ADS  Google Scholar 

  41. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  42. Corominas-Murtra, B., Fortuny, J., Sole, R.V.: Towards a mathematical theory of meaningful communication. Sci. Rep. 4, 4587 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61871407), the Natural Science Foundation of Hunan Province (Grant No. 2021JJ30878), the Key Research and Development Program of Hunan Province (Grant No. 2022GK2016) and the Special Funds for the Construction of an Innovative Province in Hunan (Grant No. 2020GK4063). We acknowledge the support from the Optoelectronic Information Center of Central South University and Hunan Railway Engineering Machinery Electro-hydraulic Control Engineering Technology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, X., Zhang, H., Zhao, W. et al. Orbital angular momentum-encoded quantum digital signature over atmospheric channel. Quantum Inf Process 21, 191 (2022). https://doi.org/10.1007/s11128-022-03536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03536-3

Keywords

Navigation