Skip to main content

Advertisement

Log in

Wave packet spreading with periodic, Fibonacci quasiperiodic, and random nonlinear discrete-time quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider a nonlinear discrete-time quantum walk whose coin operator temporally changes according to periodic, Fibonacci quasiperiodic, and random sequences, respectively. Three distinguished nonlinearity regimes are numerically found, where transport spreading behaviors are similar to that of linear quantum walks, traveling soliton-like behavior, and first self-trapped near original site then multiple-traveling-soliton-like behavior, respectively. We contrast the differences among the three kinds of quantum walks and give some reasonable explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code Availability

Not applicable.

References

  1. Masuda, N., Porter, M.A., Lambiotte, R.: Random walks and diffusion on networks. Phys. Rep. 716, 1 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    ADS  Google Scholar 

  3. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  4. Ambainis, A., Kempe, J., Rivosh, A.: Coins Make Quantum Walks Faster. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  5. Mülken, O., Blumen, A.: Continuous-time quantum walks: Models for coherent transport on complex networks. Phys. Rep. 502, 37 (2011)

    MathSciNet  ADS  Google Scholar 

  6. Zhan, X., Xiao, L., Bian, Z., Wang, K., Qiu, X., Sanders, B.C., Yi, W., Xue, P.: Detecting topological invariants in nonunitary discrete-time quantum walks. Phys. Rev. Lett. 119, 130501 (2017)

    MathSciNet  ADS  Google Scholar 

  7. Portugal, R.: Quantum Walks and Search Algorithm. Springer, Berlin (2013)

    MATH  Google Scholar 

  8. Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8, 285 (2012)

    Google Scholar 

  9. Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307 (2003)

    ADS  Google Scholar 

  10. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Reitzner, D., Nagaj, D., Buz̆ek, V.: Quantum walks. Acta Physica Slovaca 61, 603 (2011)

    ADS  Google Scholar 

  12. Manouchehri, K., Wang, J.B.: Physical Implementation of Quantum Walks. Springer, New York (2006)

    MATH  Google Scholar 

  13. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    MathSciNet  ADS  Google Scholar 

  14. Childs, A.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  15. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33th STOC, pp. 37–49. ACM, New York, (2001)

  16. Chandrashekar, C.M.: Disordered-quantum-walk-induced localization of a Bose–Einstein condensate. Phys. Rev. A 83, 022320 (2011)

    ADS  Google Scholar 

  17. Vieira, R., Amorim, E.P.M., Rigolin, G.: Dynamically disordered quantum walk as a maximal entanglement generator. Phys. Rev. Lett. 111, 180503 (2013)

    ADS  Google Scholar 

  18. Vakulchyk, I., Fistul, M.V., Qin, P., Flach, S.: Anderson localization in generalized discrete-time quantum walks. Phys. Rev. B 96, 144204 (2017)

    ADS  Google Scholar 

  19. Ribeiro, P., Milman, P., Mosseri, R.: Aperiodic quantum random walks. Phys. Rev. Lett. 93, 190503 (2004)

    MathSciNet  ADS  Google Scholar 

  20. Geraldi, A., Laneve, A., Bonavena, L.D., Sansoni, L., Ferraz, J., Fratalocchi, A., Sciarrino, F., Cuevas, Á., Mataloni, P.: Experimental investigation of superdiffusion via coherent disordered quantum walks. Phys. Rev. Lett. 123, 140501 (2019)

    ADS  Google Scholar 

  21. Lo Gullo, N., Ambarish, C.V., Busch, Th., Dell’Anna, L., Chandrashekar, C.M.: Dynamics and energy spectra of aperiodic discrete-time quantum walks. Phys. Rev. E 96, 012111 (2017)

    ADS  Google Scholar 

  22. Romanelli, A.: The Fibonacci quantum walk and its classical trace map. Physica A 388, 3985 (2009)

    MathSciNet  ADS  Google Scholar 

  23. Martín-Vázquez, G., Rodríguez-Laguna, J.: Optimizing the spatial spread of a quantum walk. Phys. Rev. A 102, 022223 (2020)

    MathSciNet  ADS  Google Scholar 

  24. Navarrete-Benlloch, C., Pérez, A., Roldán, E.: Nonlinear optical Galton board. Phys. Rev. A 75, 062333 (2007)

    ADS  Google Scholar 

  25. Buarque, A.R.C., Dias, W.S.: Self-trapped quantum walks. Phys. Rev. A 101, 023802 (2020)

    MathSciNet  ADS  Google Scholar 

  26. Buarque, A.R.C., Dias, W.S.: Probing coherence and noise tolerance in discrete-time quantum walks: unveiling self-focusing and breathing dynamics. Phys. Rev. A 103, 042213 (2021)

    MathSciNet  ADS  Google Scholar 

  27. Vakulchyk, I., Fistul, M.V., Flach, S.: Wave packet spreading with disordered nonlinear discrete-time quantum walks. Phys. Rev. Lett. 122, 040501 (2019)

    ADS  Google Scholar 

  28. Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Weak limit theorem for a nonlinear quantum walk. Quantum Inf. Process. 17, 215 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  29. Mendonça, J.P., de Moura, F.A.B.F., Lyra, M.L., Almeida, G.M.A.: Emergent nonlinear phenomena in discrete-time quantum walks. Phys. Rev. A 101, 062335 (2020)

    MathSciNet  ADS  Google Scholar 

  30. Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Dynamics of solitons for nonlinear quantum walks. J. Phys. Commun. 3, 075002 (2019)

    Google Scholar 

  31. Johansson, M., Hörnquist, M., Riklund, R.: Effects of nonlinearity on the time evolution of single-site localized states in periodic and aperiodic discrete systems. Phys. Rev. B 52, 231 (1995)

    ADS  Google Scholar 

  32. Zhang, Z., Tong, P., Gong, J., Li, B.: Wave packet dynamics in one-dimensional linear and nonlinear generalized Fibonacci lattices. Phys. Rev. E 83, 056205 (2011)

    ADS  Google Scholar 

  33. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    ADS  Google Scholar 

  34. Abrahams, E. (ed.): 50 Years of Anderson Localization. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  35. Grossing, G., Zeilinger, A.: Quantum cellular automata. Complex Syst. 2, 197 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Fussy, S., Grossing, G., Schwabl, H., Scrinzi, A.: Nonlocal computation in quantum cellular automata. Phys. Rev. A 48, 3470 (1993)

    ADS  Google Scholar 

  37. Xiao, L., Zhan, X., Bian, Z.H., Wang, K.K., Zhang, X., Wang, X.P., Li, J., Mochizuki, K., Kim, D., Kawakami, N., Yi, W., Obuse, H., Sanders, B.C., Xue, P.: Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117 (2017)

    Google Scholar 

  38. Nitsche, T., Barkhofen, S., Kruse, R., Sansoni, L., Štefaňák, M., Gábris, A., Potoček, V., Kiss, T., Jex, I., Silberhorn, C.: Probing measurement-induced effects in quantum walks via recurrence. Sci. Adv. 4, eaar6444 (2018)

    ADS  Google Scholar 

  39. Barber, E.M.: Aperiodic Structures in Condensed Matter: Fundamentals and Applications. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  40. Zhang, Z., Tong, P., Gong, J., Li, B.: Quantum hyperdiffusion in one-dimensional tight-binding lattices. Phys. Rev. Lett. 108, 070603 (2012)

    ADS  Google Scholar 

  41. Thouless, D.J.: Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93 (1974)

    ADS  Google Scholar 

  42. Edwards, J.T., Thouless, D.J.: Regularity of the density of states in Anderson’s localized electron model. J. Phys. C 4, 453 (1971)

    ADS  Google Scholar 

  43. Fillman, J., Ong, D.C.: Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks. J. Func. Anal. 272, 5107 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to the anonymous referees and editor for their comments and suggestions that have greatly helped to improve the quality of the manuscript. This work is supported by the National Natural Science Foundation of China (Grant No. 61871234)

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Longyan Gong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

We the authors complied or adhered strictly to the code of ethics for writing manuscripts by ensuring that no plagiarism was made and that the literature was referenced appropriately to their respective authors. This work poses no ethical issues or challenges and is rightfully in line with the format for writing manuscripts or articles. This work follows high compliance with ethical standards.

Consent to participate

All authors consent to participate in this research or paper.

Consent for publishing

All authors consent to publish this research or paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Guo, X., Sun, J. et al. Wave packet spreading with periodic, Fibonacci quasiperiodic, and random nonlinear discrete-time quantum walks. Quantum Inf Process 21, 393 (2022). https://doi.org/10.1007/s11128-022-03538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03538-1

Keywords

Navigation