Skip to main content
Log in

Double controlled quantum phase gate based on three atoms trapped in separate optical cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a Controlled–Controlled-phase gate (CCZ) using three atoms trapped in separate optical cavities and connected by two optical fibers considered in the short fiber limit. The gate is realized within the null, single and double-excitation subspaces. The Hamiltonian of the atom-cavity-fiber system is presented, and we give Hamiltonian matrix expressions for different initial states. We study the fidelity of the proposed CCZ gate which depends upon the physical parameters of the entire system and show that it can reach 99.28%. We numerically simulate the impact of the spontaneous emission and photon leakage from the fibers and the cavities on the fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed in this study.

References

  1. Gibney, E.: Quantum computer race intensifies as alternative technology gains steam. Nature 587, 342–343 (2020)

    Article  ADS  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  3. Slimen, I.B., Gueddana, A., Lakshminarayanan, V.: Discrete-time quantum walk on circular graph: Simulations and effect of gate depth and errors. Int. J. Quant. Inform. 19(02), 2150008 (2021)

    Article  MathSciNet  Google Scholar 

  4. Levine, Y., Sharir, O., Cohen, N., Shashua, A.: Quantum Entanglement in Deep Learning Architectures. Phys. Rev. Lett. 122, 065301 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Piparo, N.L., Hanks, M., Nemoto, K., Munro, W.J.: Aggregating quantum networks. Phys. Rev. A 102, 052613 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kang, Y.H., Xia, Y., Lu, P.M.: Two-photon phase gate with linear optical elements and atom-cavity system. Quant. Inf. Process. 15, 4521–4535 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Song, L.C., Xia, Y., Song, J.: Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quant. Inf. Process. 14, 511–529 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Liu, W.W., Zhang, C.L., Zhang, L.: Fast and robust implementation of quantum gates by transitionless quantum driving. Quant. Inf. Process. 20, 118 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. Rosenblum, S., Gao, Y.Y., Reinhold, P., Wang, C., Axline, C.J., et al.: A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018)

    Article  ADS  Google Scholar 

  11. Heuck, M., Jacobs, K., Englund, D.R.: Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 124, 160501 (2020)

    Article  ADS  Google Scholar 

  12. Gong, Y.X., Guo, G.C., Ralph, T.C.: Methods for a linear optical quantum Fredkin gate. Phys. Rev. A. 78, 012305 (2008)

    Article  ADS  Google Scholar 

  13. Gueddana, A., Attia, M., Chatta, R.: Non-deterministic quantum CNOT gate with double encoding. SPIE Optical Engineering + Applications, Quantum Communications and Quantum Imaging XI, 88750V. San Diego, CA, USA (2013)

  14. Strauch, F.W., Johnson, P.R., Dragt, A.J., Lobb, C.J., Anderson, J.R., et al.: Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005 (2003)

    Article  ADS  Google Scholar 

  15. Lacroix, N., Hellings, C., Andersen, C.K., Paolo, A.D., Remm, A., et al.: Improving the performance of deep quantum optimization algorithms with continuous gate sets. PRX Quant. 1, 110304 (2020)

    Article  Google Scholar 

  16. Monz, T., Kim, K., Hansel, W., Riebe, M., Villar, A.S., et al.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)

    Article  ADS  Google Scholar 

  17. Schäfer, V., Ballance, C., Thirumalai, K., Stephenson, L.J., Ballance, T.G., et al.: Fast quantum logic gates with trapped-ion qubits. Nature 555, 75–78 (2018)

    Article  ADS  Google Scholar 

  18. Yun, M., Guo, F.Q., Li, M., Yan, L.L., Feng, M., et al.: Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons. Opt. Expr. 29, 8737–8750 (2021)

    Article  ADS  Google Scholar 

  19. Hao, Y., Lin, G., Niu, Y., et al.: One-step implementation of a multiqubit controlled-phase-flip gate in coupled cavities. Quant. Inf. Process. 18, 18 (2019)

    Article  ADS  Google Scholar 

  20. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  21. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  22. Ye, S.Y., Yang, Z.B., Zheng, S.B., Serafini, A.: Coherent quantum effects through dispersive bosonic media. Phys. Rev. A 82, 012307 (2010)

    Article  ADS  Google Scholar 

  23. Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)

    Article  ADS  Google Scholar 

  24. Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)

    Article  ADS  Google Scholar 

  25. Yang, Z.B., Xia, Y., Zheng, S.B.: Resonant scheme for realizing quantum phase gates for two separate atoms via coupled cavities. Opt. Commun. 283(15), 3052–3057 (2010)

    Article  ADS  Google Scholar 

  26. Zheng, S.B.: Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Appl. Phys. Lett. 94(15), 154101 (2009)

    Article  ADS  Google Scholar 

  27. Boca, A., Miller, R., Birnbaum, K.M., Boozer, A.D., McKeever, J., Kimble, H.J.: Observation of the vacuum rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004)

    Article  ADS  Google Scholar 

  28. Trupke, M., Hinds, E.A., Eriksson, S., Curtis, E.A.: Microfabricated high-finesse optical cavity with open access and small volume. Appl. Phys. Lett. 87, 211106 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amor Gueddana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueddana, A., Lakshminarayanan, V. Double controlled quantum phase gate based on three atoms trapped in separate optical cavities. Quantum Inf Process 21, 208 (2022). https://doi.org/10.1007/s11128-022-03539-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03539-0

Keywords

Navigation