Skip to main content
Log in

An improved and cost reduced quantum circuit generator approach for image encoding applications

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum computers in the NISQ era have a limited number of qubits and can produce noisy results. The greater the depth of the circuits, the greater the amount of cumulative noise produced. On the other hand, in order to use classical data in quantum computing, it must be encoded as quantum data. In this study, a new optimum circuit generation algorithm is proposed especially for quantum encoding of data such as images. There are two main optimization methods in the literature for optimizing reversible circuits, ESOP and POE. The proposed algorithm uses both as hybrids, eliminating the disadvantages of both. The proposed algorithm is template-free compared to existing POE methods, and the proposed circuits are easy-to-implement. On the other hand, in cases where the ESOP method does not provide sufficient reduction, the proposed method obtains simpler and optimum circuits. Experimental results show that the proposed method provides an improvement of 40–57% compared to ESOP and derivative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Goong Chen, D.A., Church, B.G.: Englert, and Muhammad Suhail Zubairy. Mathematical models of contemporary elementary quantum computing devices. In: Centre de Recherches Mathematiques. Proceedings and Lecture Notes, vol. 33. CRM (2003)

  2. McCaskey, A.J., Dumitrescu, E.F., Liakh, D., Chen, M., Feng, W., Humble, T.S.: A language and hardware independent approach to quantum-classical computing. SoftwareX 7, 245–254 (2018). https://doi.org/10.1016/j.softx.2018.07.007

    Article  ADS  Google Scholar 

  3. Zidan, M.: A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 34(35), 2050401 (2020). https://doi.org/10.1142/S0217984920504011

    Article  ADS  MathSciNet  Google Scholar 

  4. Zidan, M., Eleuchc, H., Abdel-Atye, M.: Non-classical computing problems: toward novel type of quantum computing problems. Results Phys. 21, 103536 (2021). https://doi.org/10.1142/S0217984920504011

    Article  Google Scholar 

  5. Chen, Y., Wei, S., Gao, X., Wang, C., Wu, J., Guo, H.: An optimized quantum maximum or minimum searching algorithm and its circuits. arXiv:1908.07943 [quant-ph] (2019)

  6. Feynman, R.P.: Quantum mechanical computers. Foundations of Physics, p. 25 (1986)

  7. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  8. Singh, J., Singh, M.: Evolution in quantum computing. In: 2016 International Conference System Modeling & Advancement in Research Trends (SMART), Moradabad, India, pp. 267–270. IEEE (2016). ISBN 978-1-5090-3543-4. https://doi.org/10.1109/SYSMART.2016.7894533, http://ieeexplore.ieee.org/document/7894533/

  9. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). ISSN 2521-327X. https://doi.org/10.22331/q-2018-08-06-79. arXiv: 1801.00862

  10. Yetis, H., Karakoes, M.: Investigation of noise effects for different quantum computing architectures in IBM-Q at NISQ level. In: 2021 25th International Conference on Information Technology (IT), Zabljak, Montenegro, February, pp. 1–4. IEEE (2021). ISBN 978-1-72819-103-4. https://doi.org/10.1109/IT51528.2021.9390130, https://ieeexplore.ieee.org/document/9390130/

  11. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5(4), 044007 (2020). ISSN 2058-9565. https://doi.org/10.1088/2058-9565/abae7d, https://iopscience.iop.org/article/10.1088/2058-9565/abae7d

  12. Bickley, S.J., Chan, H.F., Schmidt, S.L., Torgler, B.: Quantum-sapiens: the quantum bases for human expertise, knowledge, and problem-solving. Technol. Anal. Strateg. Manag. 33, 1290–1302 (2021)

    Article  Google Scholar 

  13. Schaeffer, B., Tran, L., Gronquist, A., Perkowski, M., Kerntopf, P.: Synthesis of reversible circuits based on products of exclusive OR sums. In: 2013 IEEE 43rd International Symposium on Multiple-Valued Logic, pp. 35–40 (2013). ISSN: 0195-623X. https://doi.org/10.1109/ISMVL.2013.54

  14. Meuli, G., Schmitt, B., Ehlers, R., Riener, H., De Micheli, G.: Evaluating ESOP optimization methods in quantum compilation flows. In: International Conference on Reversible Computation, pp. 191–206. Springer (2019)

  15. Yan, F., Iliyasu, A.M., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Strubell, E.: An introduction to quantum algorithms. In: Lecture Notes, p. 35 (2011)

  17. Yetiş, H., Karaköse, M.: Quantum circuits for binary convolution. In: 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), p. 5 (2020)

  18. Yetiş, H., Karaköse, M.: Obtaining quantum gate models from known input and output values. In: Obtaining Quantum Gate Models from Known Input and Output Values, p. 4 (2021)

  19. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits—a survey. ACM Comput. Surv. 45(2), 1–34 (2013)

    Article  Google Scholar 

  20. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst. 32(6), 818–830 (2013). ISSN 1937-4151. https://doi.org/10.1109/TCAD.2013.2244643. Conference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

  21. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, pp. 288–293 (2011). https://doi.org/10.1109/ISMVL.2011.54. ISSN: 2378-2226

  22. LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Phys. Rev. A 102(3), 032420 (2020)

    Article  ADS  Google Scholar 

  23. Mitarai, K., Kitagawa, M., Fujii, K.: Quantum analog-digital conversion. Phys. Rev. A 99(1), 012301 (2019)

    Article  ADS  Google Scholar 

  24. Yao, X.-W., Wang, H., Liao, Z., Chen, M.-C., Pan, J., Li, J., Zhang, K., Lin, X., Wang, Z., Luo, Z., Zheng, W., Li, J., Zhao, M., Peng, X., Suter, D.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7(3), 031041 (2017). ISSN 2160-3308. https://doi.org/10.1103/PhysRevX.7.031041, arXiv: 1801.01465

  25. Sasamal, T.N., Singh, A.K., Mohan, A.: Reversible logic circuit synthesis and optimization using adaptive genetic algorithm. Procedia Comput. Sci. 70, 407–413 (2015)

    Article  Google Scholar 

  26. Sasanian, Z., Miller, D.M.: Reversible and quantum circuit optimization: a functional approach. In: International Workshop on Reversible Computation, pp. 112–124. Springer (2012)

  27. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003). https://doi.org/10.1109/TCAD.2003.811448. ISSN 1937-4151. Conference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

  28. Rahman, M.Z., Rice, J.E.: Templates for positive and negative control Toffoli networks. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Kobsa, A., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Terzopoulos, D., Tygar, O., Weikum, G., Yamashita, S., Minato, S. (eds.) Reversible Computation. Lecture Notes in Computer Science, vol. 8507, pp. 125–136. Springer, Cham (2014). ISBN 978-3-319-08493-0 978-3-319-08494-7. https://doi.org/10.1007/978-3-319-08494-7_10

  29. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 849–854. IEEE (2010)

  30. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-products. In: Electrical and Computer Engineering Faculty Publications and Presentations, p. 10 (2001)

  31. Adnan, N.A.B., Yamashita, S., Mishchenko, A.: Reduction of quantum cost by making temporary changes to the function. IEICE Trans. Inf. Syst. E100.D(7), 1393–1402 (2017). ISSN 0916-8532, 1745-1361. https://doi.org/10.1587/transinf.2016EDP7397, https://www.jstage.jst.go.jp/article/transinf/E100.D/7/E100.D_2016EDP7397/_article

  32. Matsuo, A., Hattori, W., Yamashita, S.: Dynamical decomposition and mapping of mpmct gates to nearest neighbor architectures. In: 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 786–791. IEEE (2021)

  33. Szyprowski, M., Kerntopf, P.: Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. In: 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pp. 802–807 (2013) https://doi.org/10.1109/NANO.2013.6721034. ISSN: 1944-9399

  34. Gado, M., Younes, A.: Optimization of reversible circuits using Toffoli decompositions with negative controls. Symmetry 13(6), 1025 (2021) https://doi.org/10.3390/sym13061025, https://www.mdpi.com/2073-8994/13/6/1025. Number: 6 Publisher: Multidisciplinary Digital Publishing Institute

  35. Maslov, D., Dueck, G.W.: Improved quantum Cost for n-bit Toffoli gates. Electron. Lett. 39(25), 1790 (2003). ISSN 00135194. https://doi.org/10.1049/el:20031202, http://arxiv.org/abs/quant-ph/0403053

  36. Lukac, M., Kameyama, M., Perkowski, M., Kerntopf, P.: Minimization of quantum circuits using quantum operator forms (2017). arXiv:1701.01999 [quant-ph]

  37. Sasanian, Z., Miller, D.M.: NCV realization of MCT gates with mixed controls. In: Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 567–571 https://doi.org/10.1109/PACRIM.2011.6032956. ISSN: 2154-5952

  38. Shende, V.V., Markov, I.L.: On the CNOT-cost of TOFFOLI gates. arXiv:0803.2316 [quant-ph] (2008)

  39. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International symposium on multi-valued logic, pp. 220–225 (2008). RevLib is available at http://www.revlib.org

  40. Lukac, M., Kameyama, M., Perkowski, M., Kerntopf, P.: Minimization of quantum circuits using quantum operator forms (2017). arXiv preprint arXiv:1701.01999

  41. Abdessaied, N., Amy, M., Drechsler, R., Soeken, M.: Complexity of reversible circuits and their quantum implementations. Theor. Comput. Sci. 618, 85–106 (2016)

    Article  MathSciNet  Google Scholar 

  42. Bae, J.-H., Alsing, P.M., Ahn, D., Miller, W.A.: Quantum circuit optimization using quantum Karnaugh map. Sci. Rep. 10(1), 1–8 (2020)

    Article  Google Scholar 

  43. Strilanc. Strilanc/quirk: a drag-and-drop quantum circuit simulator that runs in your browser. A toy for exploring and understanding small quantum circuits (2019). https://github.com/Strilanc/Quirk

  44. Jie, S., Guo, X., Liu, C., Shuhan, L., Li, L.: An improved novel quantum image representation and its experimental test on IBM quantum experience. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the TUBITAK (The Scientific and Technological Research Council of Turkey) under Grant No: 121E439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Yetiş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article work was carried out within the scope of Hasan Yetiş’s doctoral dissertation named “Development of Quantum Computation based Artificial Intelligence Algorithms”. The supervisor of the thesis: Mehmet Karaköse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yetiş, H., Karaköse, M. An improved and cost reduced quantum circuit generator approach for image encoding applications. Quantum Inf Process 21, 203 (2022). https://doi.org/10.1007/s11128-022-03546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03546-1

Keywords

Navigation