Skip to main content
Log in

Optimized search for complex protocols based on entanglement detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum properties are indispensable resources in various quantum information processing tasks. In this paper, we are interested in entanglement which plays a key role in multipartite protocols. However, there is still a lack of effective means to detect this interesting feature. To overcome this problem, we propose an algorithm which makes it possible to check separability in a given quantum state whatever its size. For optimization purposes, this process is integrated as an optimization constraint in the design of complex systems. It allows a complete exploration of the entangled quantum channels. Our strategy is applied to elaborate automatically a special controlled bidirectional teleportation protocol. The novelty lies in the fact that the supervisor can activate or deactivate the teleportation process after partial measurements of the two parties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Our manuscript has not associated data.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Deutsch, D.: Quantum theory, the church-turing thesis, and the universal quantum computer. Proc. R. Soc. London, Ser. A 400, 97 (1985)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unkown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sun, Y.R., Xiang, N., Dou, Z., Xu, G., Chen, X.B., Yang, Y.X.: A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf. Process. 18, 281 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Sun, S., Zhang, H.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process 19, 120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aliloute, S., El Allati, A., El Aouadi, I.: bidirectional teleportation using coherent states. Quantum Inf. Process. 20, 29 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. Eleni, D., Hoi-Kwong, L., Bing, Q., Zhiliang, Y.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016)

    Article  Google Scholar 

  9. Xu, L., Xin, Y., Rong, X., Heqing, W., Hao, L., Zhen, W., Lixing, Y., Xue, F., Fang, L., Kaiyu, C., Yidong, H., Wei Zhang, Z.: An entanglement-based quantum vetwork based on symmetric dispersive optics quantum key distribution. APL Photonics 5, 7 (2020)

    Article  Google Scholar 

  10. Zhihui, L., Duo, H., Chengji, L., Feifei, G.: The phase matching quantum key distribution protocol with 3-state systems. Quantum Inf. Process. 20, 11 (2021)

    Article  MathSciNet  Google Scholar 

  11. Adriano, B., Artur, E.: Dense coding based on quantum entanglement. J. Modern Opt. 42, 6 (1995)

    Google Scholar 

  12. Moreno, G., Nery, R., Gois, C., Rabelo, R., Chaves, R.: Semi-device-independent certification of entanglement in superdense coding. Phys. Rev. A 103, 871 (2021)

    Article  MathSciNet  Google Scholar 

  13. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W-states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  14. Long, Y., Zhang, C., Sun, Z.: Standard (3, 5)-threshold quantum secret sharing by maximally entangled 6-qubit states. Scientif. Rep. 11, 22649 (2021)

    Article  ADS  Google Scholar 

  15. Tsai, C.W., Yang, C.W., Lin, J.: Multiparty mediated quantum secret sharing protocol. Quantum Inf. Process. 21, 63 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett 78(26), 5022 (1997)

    Article  ADS  Google Scholar 

  17. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  18. Raj, R., Banerjee, S., Panigrahi, P.K.: Remote state design for efficient quantum metrology with separable and non-teleporting states. Quantum Rep. 3, 1 (2021)

    Google Scholar 

  19. Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quantum Inf. Comput. 10, 3 (2008)

    MathSciNet  Google Scholar 

  20. Huang, Y.: Computing quantum discord is NP-complete. New J. Phy 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhou, Y., Zhao, Q., Yuan, X., Ma, X.: Detecting multipartite entanglement structure with minimal resources. Quantum Inf. 5, 83 (2019)

    Article  Google Scholar 

  22. Li, J., Chen, L.: Detection of genuine multipartite entanglement based on uncertainty relations. Quantum Inf. Process. 20, 6 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bhaskara, V.S., Panigrahi, P.K.: Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using lagrange’s identity and wedge product. Quantum Inf. Process. 16, 118 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Banerjee, S., Panigrahi, P.K.: Quantifying parallelism of vectors is the quantication of distributed n party entanglement. J. Phys. A Math. Theor. 53, 9 (2020)

    Article  Google Scholar 

  25. Khalfaoui, K., Boudjedaa, T., Kerkouche, E.H.: Automatic design of quantum circuits : generation of quantum teleportation protocols. Quantum Inf. Process. 20, 283 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for the detailed comments and suggestions. Their recommendations have widely contributed to the enrichment of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Khalfaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfaoui, K., Kerkouche, E.H., Boudjedaa, T. et al. Optimized search for complex protocols based on entanglement detection. Quantum Inf Process 21, 226 (2022). https://doi.org/10.1007/s11128-022-03550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03550-5

Keywords

Navigation