Skip to main content
Log in

Protecting genuine tripartite nonlocality by weak measurement and quantum measurement reversal

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We use weak measurement (WM) and quantum measurement reversal (QMR) techniques to suppress the degradation of genuine nonlocality of a special class of three-qubit “X” states when they suffer from the amplitude damping noise. We choose the maximal violation of the Svetlichny inequality to quantify the genuine nonlocality of states in this paper. We analyse mathematically the sufficient and necessary condition for weak measurement or QMR to enhance the genuine nonlocality of such “X” states. We propose a specific protection scheme combined WM with QMR for such states, and calculate the maximal genuine nonlocality reached by our scheme as well as the success probability. We apply our scheme to the GHZ-like states and the Werner-type states to show the protection effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 696–702 (1935)

    Article  Google Scholar 

  2. Buhrman, H., Cleve, R., Massar, S., et al.: Non-locality and communication complexity. Rev. Modern Phys. 82(1), 665–698 (2009)

    Article  ADS  Google Scholar 

  3. Bardyn, C.E., Liew, T., Massar, S., et al.: Device-independent state estimation based on Bell’s inequalities. Phys. Rev. A 80(6), 062327 (2009)

    Article  ADS  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., et al.: Bell nonlocality. Rev. Modern Phys. 86(2), 419–478 (2014)

    Article  ADS  Google Scholar 

  5. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35(10), 3066–3069 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gühne, O., Toth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aolita, L., Melo, F.D., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78(4), 042001 (2015)

    Article  ADS  Google Scholar 

  8. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  ADS  Google Scholar 

  9. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594–2597 (1998)

    Article  ADS  Google Scholar 

  10. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82(12), 2417–2421 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60(8), 5737–5742 (1999)

    Article  ADS  Google Scholar 

  12. Katz, N., Ansmann, M., Bialczak, R.C., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312(5779), 1498–1500 (2006)

    Article  ADS  Google Scholar 

  13. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(4), 1334–1342 (2010)

    Article  Google Scholar 

  14. Man, Z.X., Xia, Y.J.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86(1), 12325 (2012)

    Article  ADS  Google Scholar 

  15. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97(16), 166805.1-166805.4 (2006)

    Article  ADS  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Yu, Y., Ye, L.: Protecting entanglement from amplitude damping in non-inertial frames by weak measurement and reversal. Quantum Inf. Process. 14(1), 321–335 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Liao, X.P., Wen, W., Rong, M.S., et al.: Effect of partial-collapse measurement on quantum entanglement in noninertial frames. Quantum Inf. Process. 19(3), 1–14 (2020)

    MathSciNet  Google Scholar 

  19. Xiao, X., Yao, Y., Zhong, W.J., et al.: Enhancing teleportation of quantum Fisher information by partial measurements. IEEE Trans. Nucl. Sci. 29(1), 1029–1033 (2015)

    Google Scholar 

  20. Zhang, Y.H., Xia, Y.J.: Improving tripartite entanglement in open system by weak measurement and quantum measurement reversal. Laser Phys. 25(5), 055201 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Sun, W.Y., Wang, D., Ye, L.: Dynamics and recovery of genuine multipartite Einstein–Podolsky–Rosen steering and genuine multipartite nonlocality for a dissipative Dirac system via Unruh effect. Annalen Der Physik 530, 1700442 (2017)

    Article  ADS  Google Scholar 

  22. Ding, Z.Y., Shi, J.D., Wu, T., et al.: Tripartite nonlocality for an open Dirac system in the background of Schwarzschild space-time. Laser Phys. Lett. 14(12), 125201 (2017)

    Article  ADS  Google Scholar 

  23. Parvinder, S., Atul, K.: Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements. Quantum Inf. Process. 17(9), 249 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wang, K., Zheng, Z.J.: Violation of Svetlichny inequality in Triple Jaynes–Cummings models. Sci. Rep. 10(1), 1–10 (2020)

    Article  MathSciNet  Google Scholar 

  25. Rafsanjani, S., Huber, M., Broadbent, C.J., et al.: Genuinely multipartite concurrence of N-qubit X-matrices. Phys. Rev. A 86(6), 11987 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Key Research and Development Project of Guang dong Province under Grant No. 2020B0303300001 and the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515310016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Jun Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YQ., Yong, X. & Zheng, ZJ. Protecting genuine tripartite nonlocality by weak measurement and quantum measurement reversal. Quantum Inf Process 21, 225 (2022). https://doi.org/10.1007/s11128-022-03563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03563-0

Keywords

Navigation