Skip to main content
Log in

Optimization parameter prediction-based XGBoost of TF-QKD

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Twin-field quantum key distribution (TF-QKD) can overcome the basic limits of QKD without repeaters. In practice, TF-QKD needs to optimize all parameters when limited data sets are considered. The traditional exhaustive traversal or local search algorithm can’t meet the time and resource requirements of the real-time communication system. Combined with machine learning, parameter optimization prediction of QKD has become the mainstream of parameter optimization. Random forest (RF) is a classical algorithm of the bagging class in integrated learning, and back-propagation neural network (BPNN) is an important algorithm in the neural network. This paper uses the extreme gradient boosting (XGBoost) of boosting class to predict the optimization parameters of TF-QKD and compares it with RF and BPNN. The results show that XGBoost can efficiently and accurately predict optimization parameters, and its performance is slightly better than RF and BPNN in parameter prediction, which can provide a reference for future real-time QKD networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Modern Phys. 74(1), 145 (2002)

    ADS  MATH  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Takeoka, M., Guha, S., Wilde, M.M.: Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5(1), 1–7 (2014)

    Google Scholar 

  6. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 1–15 (2017)

    Google Scholar 

  7. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  8. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    ADS  Google Scholar 

  9. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93(4), 042324 (2016)

    ADS  Google Scholar 

  10. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    ADS  Google Scholar 

  11. Curty, M., Azuma, K., Lo, H.-K.: Simple security proof of twin-field type quantum key distribution protocol. npj Quant. Inform. 5(1), 1–6 (2019)

    Google Scholar 

  12. Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98(4), 042332 (2018)

    ADS  Google Scholar 

  13. Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)

    ADS  Google Scholar 

  14. Jiang, C., Yu, Z.-W., Hu, X.-L., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution with discrete-phase-randomized weak coherent states. Phys. Rev. Res. 2(4), 043304 (2020)

    Google Scholar 

  15. Hu, X.-L., Jiang, C., Yu, Z.-W., Wang, X.-B.: Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters. Phys. Rev. A 100(6), 062337 (2019)

    ADS  Google Scholar 

  16. Yu, Z.-W., Hu, X.-L., Jiang, C., Xu, H., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep. 9(1), 1–8 (2019)

    ADS  Google Scholar 

  17. He, S.-F., Wang, Y., Li, J.-J., Bao, W.-S.: Asymmetric twin-field quantum key distribution with both statistical and intensity fluctuations. Commun. Theor. Phys. 72(6), 065103 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Park, J., Lee, J., Heo, J.: Improved statistical fluctuation analysis for twin-field quantum key distribution. Quantum Inf. Process. 20(4), 1–9 (2021)

    MathSciNet  Google Scholar 

  19. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052333 (2014)

    ADS  Google Scholar 

  20. Ferrari, D.: Client requirements for real-time communication services. IEEE Commun. Mag. 28(11), 65–72 (1990)

    Google Scholar 

  21. Ren, Z.-A., Chen, Y.-P., Liu, J.-Y., Ding, H.-J., Wang, Q.: Implementation of machine learning in quantum key distributions. IEEE Commun. Lett. 25(3), 940–944 (2020)

    Google Scholar 

  22. Wang, W., Lo, H.-K.: Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A 100(6), 062334 (2019)

    ADS  Google Scholar 

  23. Ding, H.-J., Liu, J.-Y., Zhang, C.-M., Wang, Q.: Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf. Process. 19(2), 1–8 (2020)

    ADS  MathSciNet  Google Scholar 

  24. Lu, F.-Y., Yin, Z.-Q., Wang, C., Cui, C.-H., Teng, J., Wang, S., Chen, W., Huang, W., Xu, B.-J., Guo, G.-C., et al.: Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network. JOSA B 36(3), 92–98 (2019)

    Google Scholar 

  25. Dong, Q., Huang, G., Cui, W., Jiao, R.-Z.: Parameter optimization in satellite-based measurement-device-independent quantum key distribution. Quantum Sci. Technol. 7, 015014 (2021)

    ADS  Google Scholar 

  26. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  27. Meinshausen, N., Ridgeway, G.: Quantile regression forests. J. Mach. Learn. Res. 7(6), 983 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Kohonen, T.: An introduction to neural computing. Neural Netw. 1(1), 3–16 (1988)

    Google Scholar 

  29. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    ADS  MATH  Google Scholar 

  30. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al.: Xgboost: extreme gradient boosting. R Package Version 1(4), 1–4 (2015)

    Google Scholar 

  31. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd international conference on knowledge discovery and data mining, pp. 785–794 (2016)

  32. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043 (2018)

    Google Scholar 

  33. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323 (2018)

    ADS  Google Scholar 

  34. Wang, R., Yin, Z.-Q., Lu, F.-Y., Wang, S., Chen, W., Zhang, C.-M., Huang, W., Xu, B.-J., Guo, G.-C., Han, Z.-F.: Optimized protocol for twin-field quantum key distribution. Commun. Phys. 3(1), 1–7 (2020)

    Google Scholar 

  35. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    ADS  Google Scholar 

  36. Ma, X., Fung, C.-H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012)

    ADS  Google Scholar 

  37. Sun, S.-H., Gao, M., Li, C.-Y., Liang, L.-M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61571060), Ministry of Science and Technology of China (Grant No. 2016YFA0301300) and Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongzhen Jiao.

Ethics declarations

Conflict of interest

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Huang, G., Cui, W. et al. Optimization parameter prediction-based XGBoost of TF-QKD. Quantum Inf Process 21, 233 (2022). https://doi.org/10.1007/s11128-022-03579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03579-6

Keywords

Navigation