Skip to main content
Log in

Enhancing the precision of multi-parameter estimation for two-level open quantum system by mixed control

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a mixed control scheme including an appropriate adaptive feedback control and an additional adaptive control is proposed to improve the precision limit of multi-parameter estimation in an atom-cavity system, where the magnitude of a magnetic field and a decoherence parameter need to be simultaneously estimated. The effect of three different feedback types on the simultaneous estimation of these two parameters is analyzed. It is shown that the precision limit can be effectively improved under the cooperation between the adaptive feedback control and the additional adaptive control induced by an additional inverse magnetic field. In particular, the optimal feedback strength depends on the estimate of the decoherence parameter and therefore will be adaptively updated. We analyze the reason why the precision limit is improved and find that our scheme can automatically give priority to the improvement of the precision limit of the magnetic field estimation and thereby achieve the improvement of the precision limit of simultaneous estimation for the two parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during this study are available from the corresponding author on reasonable request.

References

  1. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5(4), 222–229 (2011)

    Article  ADS  Google Scholar 

  3. Sugiyama, T.: Precision-guaranteed quantum metrology. Phys. Rev. A 91, 042126 (2015)

    Article  ADS  Google Scholar 

  4. Shih, Y.: Quantum imaging. IEEE J. Sel. Top. Quantum Electron. 13(4), 1016–1030 (2007)

    Article  ADS  Google Scholar 

  5. Wasilewski, W., Jensen, K., Krauter, H., Renema, J.J., Balabas, M.V., Polzik, E.S.: Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010)

    Article  ADS  Google Scholar 

  6. He, W.-T., Guang, H.-Y., Li, Z.-Y., Deng, R.-Q., Zhang, N.-N., Zhao, J.-X., Deng, F.-G., Ai, Q.: Quantum metrology with one auxiliary particle in a correlated bath and its quantum simulation. Phys. Rev. A 104, 062429 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  7. Danilishin, S.L., Khalili, F.Y.: Quantum measurement theory in gravitational-wave detectors. Living Rev. Relativ. 15(1), 5 (2012)

    Article  ADS  Google Scholar 

  8. Cole, J.H., Greentree, A.D., Oi, D.K.L., Schirmer, S.G., Wellard, C.J., Hollenberg, L.C.L.: Identifying a two-state Hamiltonian in the presence of decoherence. Phys. Rev. A 73, 062333 (2006)

    Article  ADS  Google Scholar 

  9. Shabani, A., Mohseni, M., Lloyd, S., Kosut, R.L., Rabitz, H.: Estimation of many-body quantum Hamiltonians via compressive sensing. Phys. Rev. A 84, 012107 (2011)

    Article  ADS  Google Scholar 

  10. Xiang, G.Y., Higgins, B.L., Berry, D.W., Wiseman, H.M., Pryde, G.J.: Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photon. 5(1), 43–47 (2010)

    Article  ADS  Google Scholar 

  11. Martínez-Vargas, E., Pineda, C., Leyvraz, F., Barberis-Blostein, P.: Quantum estimation of unknown parameters. Phys. Rev. A 95, 012136 (2017)

    Article  ADS  Google Scholar 

  12. Pezzè, L., Smerzi, A., Oberthaler, M.K., Schmied, R., Treutlein, P.: Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  13. Pang, S., Brun, T.A.: Quantum metrology for a general Hamiltonian parameter. Phys. Rev. A 90, 022117 (2014)

    Article  ADS  Google Scholar 

  14. Yuan, H., Fung, C.-H.F.: Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation. Phys. Rev. Lett. 115, 110401 (2015)

    Article  ADS  Google Scholar 

  15. Liu, J., Yuan, H.: Quantum parameter estimation with optimal control. Phys. Rev. A 96, 012117 (2017)

    Article  ADS  Google Scholar 

  16. Bai, K., Peng, Z., Luo, H.-G., An, J.-H.: Retrieving ideal precision in noisy quantum optical metrology. Phys. Rev. Lett. 123, 040402 (2019)

    Article  ADS  Google Scholar 

  17. Humphreys, P.C., Barbieri, M., Datta, A., Walmsley, I.A.: Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 111, 070403 (2013)

    Article  ADS  Google Scholar 

  18. Vaneph, C., Tufarelli, T., Genoni, M.G.: Quantum estimation of a two-phase spin rotation. Quantum Meas. Quantum Metro. 1(1), 12–20 (2013)

    Article  ADS  Google Scholar 

  19. Vidrighin, M.D., Donati, G., Genoni, M.G., Jin, X.-M., Kolthammer, W.S., Kim, M.S., Datta, A., Barbieri, M., Walmsley, I.A.: Joint estimation of phase and phase diffusion for quantum metrology. Nat. Commun. 5(1) (2014)

  20. Crowley, P.J.D., Datta, A., Barbieri, M., Walmsley, I.A.: Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry. Phys. Rev. A 89, 023845 (2014)

    Article  ADS  Google Scholar 

  21. Zhang, Y.-R., Fan, H.: Quantum metrological bounds for vector parameters. Phys. Rev. A 90, 043818 (2014)

    Article  ADS  Google Scholar 

  22. Baumgratz, T., Datta, A.: Quantum enhanced estimation of a multidimensional field. Phys. Rev. Lett. 116, 030801 (2016)

    Article  ADS  Google Scholar 

  23. Yuan, H.: Sequential feedback scheme outperforms the parallel scheme for Hamiltonian parameter estimation. Phys. Rev. Lett. 117, 160801 (2016)

    Article  ADS  Google Scholar 

  24. Hou, Z., Tang, J.-F., Chen, H., Yuan, H., Xiang, G.-Y., Li, C.-F., Guo, G.-C.: Zero-trade-off multiparameter quantum estimation via simultaneously saturating multiple Heisenberg uncertainty relations. Sci. Adv. 7(1), 2986 (2021)

    Article  ADS  Google Scholar 

  25. Liu, J., Yuan, H.: Control-enhanced multiparameter quantum estimation. Phys. Rev. A 96, 042114 (2017)

    Article  ADS  Google Scholar 

  26. Xu, H., Wang, L., Yuan, H., Wang, X.: Generalizable control for multiparameter quantum metrology. Phys. Rev. A 103, 042615 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  27. Yoshimura, K.G., Yamamoto, N.: Generating robust entanglement via quantum feedback. J. Phys. B: At. Mol. Opt. Phys. 52(5), 055501 (2019)

  28. Yu, M., Fang, M.-F.: Protection of quantum correlations of a two-atom system in dissipative environments via quantum-jump-based feedback control. Int. J. Theor. Phys. 56(6) (2017)

  29. Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)

    Article  ADS  Google Scholar 

  30. Wiseman, H.M.: Quantum theory of continuous feedback. Phys. Rev. A 49, 2133–2150 (1994)

    Article  ADS  Google Scholar 

  31. Chen, L., Yan, D., Song, L.J., Zhang, S.: Dynamics of quantum Fisher information in homodyne-mediated feedback control. Chin. Phys. Lett. 36(3), 030302 (2019)

    Article  ADS  Google Scholar 

  32. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.-j.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

  33. Liu, L., Yuan, H.: Achieving higher precision in quantum parameter estimation with feedback controls. Phys. Rev. A 102, 012208 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  34. Ma, S.-Q., Zhu, H.-J., Zhang, G.-F.: The effects of different quantum feedback operator types on the parameter precision of detection efficiency in optimal quantum estimation. Phys. Lett. A 381(16), 1386–1392 (2017)

    Article  ADS  Google Scholar 

  35. Xue, Z., Lin, H., Lee, T.H.: Identification of unknown parameters for a class of two-level quantum systems. IEEE Trans. Autom. Control 58(7), 1805–1810 (2013)

    Article  MathSciNet  Google Scholar 

  36. Demkowicz-Dobrzański, R., Górecki, W., Guţă, M.: Multi-parameter estimation beyond quantum Fisher information. J. Phys. A: Math. Theor. 53(36), 363001 (2020)

    Article  MathSciNet  Google Scholar 

  37. Albarelli, F., Friel, J.F., Datta, A.: Evaluating the Holevo Cramér-Rao bound for multiparameter quantum metrology. Phys. Rev. Lett. 123, 200503 (2019)

    Article  ADS  Google Scholar 

  38. Holevo, A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3(4), 337–394 (1973)

    Article  MathSciNet  Google Scholar 

  39. Razavian, S., Paris, M.G.A., Genoni, M.G.: On the quantumness of multiparameter estimation problems for qubit systems. Entropy 22(11) (2020)

  40. Li, J.-G., Zou, J., Shao, B., Cai, J.-F.: Steady atomic entanglement with different quantum feedbacks. Phys. Rev. A 77, 012339 (2008)

    Article  ADS  Google Scholar 

  41. Ahn, C., Wiseman, H.M., Milburn, G.J.: Quantum error correction for continuously detected errors. Phys. Rev. A 67, 052310 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant 61873251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Kuang.

Ethics declarations

Conflict of interest

None of the authors has a conflict of interest to declare that is relevant to the content of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Huang, T., Lu, X. et al. Enhancing the precision of multi-parameter estimation for two-level open quantum system by mixed control. Quantum Inf Process 21, 240 (2022). https://doi.org/10.1007/s11128-022-03582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03582-x

Keywords

Navigation