Skip to main content
Log in

Quantum learning of concentrated Boolean functions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a series of new results about learning of concentrated Boolean functions in the quantum computing model. Given a Boolean function f on n variables, its concentration refers to the dominant terms in its Fourier–Walsh spectrum. We show that a quantum probabilistically approximately correct learning model to learn a Boolean function characterized by its concentration yields improvements over the best-known classical method. All of our results are presented within the framework of query complexity, and therefore, our advantage represents asymptotic improvements in the number of queries using a quantum approach over its classical counterpart. Next, we prove a lower bound in the number of quantum queries needed to learn the function in the distribution-independent settings. Further, we examine the case of exact learning which is the learning variant without error. Here, we show that the query complexity grows as \(2^{{\beta }n}\) for some \(0< \beta < 1\) and therefore remains intractable even when quantum approaches are considered. This proof is based on the quantum information theoretic approach developed by researchers for the restricted case of k-sparse functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aaronson, S.: Read the fine print. Nat. Phys. 11, 291–293 (2015). https://doi.org/10.1038/nphys3272

    Article  Google Scholar 

  2. Adcock, M., Cleve, R.: A quantum Goldreich-Levin theorem with cryptographic applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002, pp. 323–334. Springer, Berlin Heidelberg (2002)

  3. Adcock, M., Cleve, R., Iwama, K., Putra, R., Yamashita, S.: Quantum lower bounds for the Goldreich-Levin problem. Inf. Process. Lett. 97(5), 208–211 (2006)

    Article  MathSciNet  Google Scholar 

  4. Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. In: Lamontagne, L., Marchand, M. (eds.) Advances in artificial intelligence, pp. 431–442. Springer, Berlin (2006)

    Chapter  Google Scholar 

  5. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013). https://doi.org/10.1007/s10994-012-5316-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987). https://doi.org/10.1007/BF00116828

    Article  MathSciNet  MATH  Google Scholar 

  7. Arunachalam, S., Chakraborty, S., Lee, T., Wolf, R.: Two new results about quantum exact learning. In: ICALP (2019)

  8. Arunachalam, S., de Wolf, R.: Guest column: a survey of quantum learning theory. SIGACT News 48(2), 41–67 (2017). https://doi.org/10.1145/3106700.3106710

    Article  MathSciNet  Google Scholar 

  9. Arunachalam, S., de Wolf, R.: Optimal quantum sample complexity of learning algorithms. J. Mach. Learn. Res. 19, 71:1–71:36 (2018). http://jmlr.org/papers/v19/18-195.html

  10. Atici, A., Servedio, R.: Improved bounds on quantum learning algorithms. Quant. Inf. Process. 4, 355–386 (2004). https://doi.org/10.1007/s11128-005-0001-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Atıcı, A., Servedio, R.: Quantum algorithms for learning and testing juntas. Quant. Inf. Process. 6, 323–348 (2007). https://doi.org/10.1007/s11128-007-0061-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474

    Article  ADS  Google Scholar 

  13. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the vapnik-chervonenkis dimension. J. ACM 36(4), 929–965 (1989). https://doi.org/10.1145/76359.76371

    Article  MathSciNet  MATH  Google Scholar 

  14. Bshouty, N., Jackson, J.: Learning DNF over the uniform distribution using a quantum example oracle. SIAM J. Comput. 28, 1136–1153 (1999). https://doi.org/10.1137/S0097539795293123

    Article  MathSciNet  MATH  Google Scholar 

  15. Bshouty, N.H., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci. 52(3), 421–433 (1996). https://doi.org/10.1006/jcss.1996.0032 . https://www.sciencedirect.com/science/article/pii/S002200009690032X

  16. Bshouty, N.H., Jackson, J.C.: Learning dnf over the uniform distribution using a quantum example oracle. SIAM J. Comput. 28(3), 1136–1153 (1998). https://doi.org/10.1137/S0097539795293123

    Article  MathSciNet  MATH  Google Scholar 

  17. Chia, N.H., Lin, H.H., Wang, C.: Quantum-inspired sublinear classical algorithms for solving low-rank linear systems (2018)

  18. Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016). https://doi.org/10.1103/physrevlett.117.130501

    Article  ADS  MathSciNet  Google Scholar 

  19. Gilyén, A., Lloyd, S., Tang, E.: Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. ArXiv arXiv:1811.04909 (2018)

  20. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. pp. 25–32 (1989). https://doi.org/10.1145/73007.73010

  21. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, p. 212-219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866

  22. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier transform (2012)

  24. Haviv, I., Regev, O.: The list-decoding size of Fourier-sparse Boolean functions (2015)

  25. Indyk, P., Kapralov, M.: Sparse fourier transform in any constant dimension with nearly-optimal sample complexity in sublinear time (2014)

  26. Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993). https://doi.org/10.1137/0222080

    Article  MathSciNet  MATH  Google Scholar 

  27. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014). https://doi.org/10.1038/nphys3029

    Article  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, USA (2011)

  29. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, USA (2014)

  30. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014). https://doi.org/10.1103/physrevlett.113.130503

    Article  ADS  Google Scholar 

  31. Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning: a big data – ai integration perspective (2019)

  32. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory to algorithms. Cambridge University Press (2014)

  33. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang, E.: Quantum-inspired classical algorithms for principal component analysis and supervised clustering (2018)

  35. Tang, E.: A quantum-inspired classical algorithm for recommendation systems. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, p. 217-228. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3313276.3316310

  36. Valiant, L.G.: A theory of the learnable. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, STOC ’84, p. 436-445. Association for Computing Machinery, New York, NY, USA (1984). https://doi.org/10.1145/800057.808710

  37. Whalen, J., Wang, Y.: Hottest job in china’s hinterlands: Teaching ai to tell a truck from a turtle. Washingtonpost (2019). https://www.washingtonpost.com/business/2019/09/26/hottest-job-chinas-hinterlands-teaching-ai-tell-truck-turtle/

  38. Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning (2014)

  39. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning (2015)

  40. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum perceptron models (2016)

  41. Zhang, C.: An improved lower bound on query complexity for quantum pac learning. Inf. Process. Lett. 111(1), 40–45 (2010) https://doi.org/10.1016/j.ipl.2010.10.007. https://www.sciencedirect.com/science/article/pii/S0020019010003133

Download references

Funding

This material is based upon work supported by Defense Advanced Research Projects Agency under the Grant No. FA8750-16-2-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Hung Pham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palem, K., Pham, D.H. & Rao, M.V.P. Quantum learning of concentrated Boolean functions. Quantum Inf Process 21, 256 (2022). https://doi.org/10.1007/s11128-022-03607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03607-5

Keywords