Skip to main content
Log in

An improved quantum network communication model based on compressed tensor network states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Almost currently published quantum key distribution (QKD) protocols are variants of the first protocol proposed by Bennett and Brassard, and the generic entanglement-based protocol. These protocols, however, are not very efficient. An improvement of key generation rate is possible by using quantum many-body systems, and tensor network states provides a compact model for them. The work presents an improved QKD protocol, which first uses partial isometries to compress a matrix product state (MPS) \(|\Psi \rangle \) into its compressed MPS \(|\Psi ^{(n)}\rangle \). Then, Alice uses \(|\Psi ^{(n)}\rangle \) to communicate with Bob via a quantum channel. Next, Alice transmits the number of compressed operations to Bob via a secure classical channel. Finally, according to the measured results, Alice and Bob share a cryptographic key from the MPS \(|\Psi \rangle \). Our protocol can obtain a higher key generation capability and a longer communication distance. We apply the flow network model to obtain the upper bound of the dimension of the geometric index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Caleffi, M., Chandra, D., Cuomo, D., et al.: The rise of the quantum internet. Computer 53(6), 67–72 (2020)

    Article  Google Scholar 

  2. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362(6412), eaam9288 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum Internet: From communication to distributed computing! In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4 (2018)

  4. Nielsen, M., Chuang, I.: Quantum computation and quantum information: 10th, anniversary Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Elliott, C., Pearson, D., Troxel, G.: Quantum cryptography in practice. In: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications, pp. 227–238 (2003)

  6. Peev, M., Pacher, C., Allaume, R., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  ADS  Google Scholar 

  7. Sasaki, M., Fujiwra, M., Ishizuka, H., et al.: Tokyo QKD network and the evolution to secure photonic network. In: CLEO: Science and Innovations. Optical Society of America, JTuC1 (2011)

  8. Chen, T.Y., Wang, J., Liang, H., et al.: Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18(26), 27217–27225 (2010)

    Article  ADS  Google Scholar 

  9. Zhang, Q., Xu, F., Chen, Y.A., et al.: Large scale quantum key distribution: challenges and solutions. Opt. Express 26(18), 24260–24273 (2018)

    Article  ADS  Google Scholar 

  10. Joshi, S.K., Aktas, D., Wengerowsky, S., et al.: A trusted nodeCfree eight-user metropolitan quantum communication network. Sci. Adv. 6(36), eaba0959 (2020)

    Article  ADS  Google Scholar 

  11. Li, Q., Wang, Y., Mao, H., et al.: Mathematical model and topology evaluation of quantum key distribution network. Opt. Express 28(7), 9419–9434 (2020)

    Article  ADS  Google Scholar 

  12. Gyöngyösi, L., Bacsardi, L., Imre, S.: A survey on quantum key distribution. Infocommun. J. 11(2), 14–21 (2019)

    Article  Google Scholar 

  13. Sharma, A., Kumar, A.: A survey on quantum key distribution. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), vol. 1, pp. 1–4. IEEE (2019)

  14. Ran, S.J., Sun, Z.Z., Fei, S.M., et al.: Tensor network compressed sensing with unsupervised machine learning. Phys. Rev. Res. 2(3), 033293 (2020)

    Article  Google Scholar 

  15. Bourennane, M., Karlsson, A., Björk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64(1), 012306 (2001)

    Article  ADS  Google Scholar 

  16. Djordjevic, I.B.: On global quantum communication networking. Entropy 22(8), 831 (2020)

    Article  ADS  Google Scholar 

  17. Shao, C., Li, Y., Li, H.: Quantum algorithm design: techniques and applications. J. Syst. Sci. Complex. 32(1), 375–452 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abubakar, M.Y., Jung, L.T., Zakaria, N., et al.: Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quantum Inf. Process. 16(6), 160 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Younes, A.: On the universality of n-bit reversible gate libraries. Appl. Math. Inf. Sci. 9(5), 2579 (2015)

    MathSciNet  Google Scholar 

  20. Castelvecchi, D.: The quantum internet has arrived (and it hasn’t). Nature 554(7690), 289–293 (2018)

    Article  ADS  Google Scholar 

  21. Gyongyosi, L., Imre, S.: Entanglement accessibility measures for the quantum Internet. Quantum Inf. Process. 19(4), 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  22. Sarma, S.D., Deng, D.L., Duan, L.M.: Machine learning meets quantum physics. arXiv preprint arXiv:1903.03516 (2019)

  23. Sun, Z.Z., Peng, C., Liu, D., et al.: Generative tensor network classification model for supervised machine learning. Phys. Rev. B 101(7), 075135 (2020)

    Article  ADS  Google Scholar 

  24. Cichocki, A.: Era of big data processing: a new approach via tensor networks and tensor decompositions. arXiv preprint arXiv:1403.2048 (2014)

  25. Lee, N., Cichocki, A.: Fundamental tensor operations for large-scale data analysis using tensor network formats. Multidimens. Syst. Signal Process. 29(3), 921–960 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, X., Yang, L.T., Wang, Y., et al.: A distributed tensor-train decomposition method for cyber-physical-social services. ACM Trans. Cyber-Phys. Syst. 3(4), 1–15 (2019)

    Article  Google Scholar 

  27. Manzoni, M.T., Chang, D.E., Douglas, J.S.: Simulating quantum light propagation through atomic ensembles using matrix product states. Nat. Commun. 8(1), 1–11 (2017)

    Article  Google Scholar 

  28. Ors, R.: Tensor networks for complex quantum systems. Nat. Rev. Phys. 1(9), 538–550 (2019)

    Article  Google Scholar 

  29. Verstraete, F., Cirac, J.I.: Matrix product states represent ground states faithfully. Phys. Rev. B 73(9), 094423 (2006)

    Article  ADS  Google Scholar 

  30. Ran, S.J., Tirrito, E., Peng, C., et al.: Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems. Springer Nature (2020)

  31. Verstraete, F., Wolf, M.M., Perez-Garcia, D., et al.: Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett. 96(22), 220601 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shi, Y.Y., Duan, L.M., Vidal, G.: Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74(2), 022320 (2006)

    Article  ADS  Google Scholar 

  33. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99(22), 220405 (2007)

    Article  ADS  Google Scholar 

  34. Bennett, C. H.: Quantum cryptography: public key distribution and coin tossing. In: Proc of IEEE International Conference on Computers. Institute of Electrical and Electronics Engineers (1984)

  35. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  36. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  37. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bai, G., Yang, Y., Chiribella, G.: Quantum compression of tensor network states. New J. Phys. 22(4), 043015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. Singh, S., Pfeifer, R.N.C., Vidal, G.: Tensor network states and algorithms in the presence of a global U (1) symmetry. Phys. Rev. B 83(11), 115125 (2011)

    Article  ADS  Google Scholar 

  41. Hauru, M., Van Damme, M., Haegeman, J.: Riemannian optimization of isometric tensor networks. arXiv preprint arXiv:2007.03638 (2020)

  42. Lin, Y.Y., Sun, J.R., Sun, Y.: Surface growth scheme for bulk reconstruction and tensor network. arXiv preprint arXiv:2010.01907 (2020)

  43. Lashkari, N.: Modular zero modes and sewing the states of QFT. J. High Energ. Phys. 2021, 189 (2021)

    Article  MathSciNet  Google Scholar 

  44. Sanz, M., Egusquiza, I., Di Candia, R., et al.: Entanglement classification with matrix product states. Sci. Rep. 6, 30188 (2016)

    Article  ADS  Google Scholar 

  45. Ors, R.: A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  46. Kaltenbaek, R., Lavoie, J., Zeng, B., et al.: Optical one-way quantum computing with a simulated valence-bond solid. Nat. Phys. 6(11), 850–854 (2010)

    Article  Google Scholar 

  47. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13(7), 1639–1650 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Hauschild, J., Pollmann, F.: Efficient numerical simulations with tensor networks: tensor network python (TeNPy). SciPost Phys. Lect. Notes (2018). https://doi.org/10.21468/SciPostPhysLectNotes.5

  49. Cohen, D.: Lecture notes in quantum mechanics. arXiv preprint arXiv:quant-ph/0605180 (2006)

  50. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  51. Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2(1), 1–10 (2019)

    Article  Google Scholar 

  52. Xu, F., Ma, X., Zhang, Q., et al.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  53. Sarvaghad-Moghaddam, M.: Efficient controlled bidirectional quantum secure direct communication using entanglement swapping in a network. arXiv preprint arXiv:1902.11188 (2019)

  54. Wang, Y., Li, Q., Han, Q., et al.: Modeling and simulation of practical quantum secure communication network. Quantum Inf. Process. 18(9), 278 (2019)

    Article  ADS  Google Scholar 

  55. Gottesman, D., Lo, H. K., Lutkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. In: International Symposium on Information Theory, ISIT 2004. Proceedings, p. 136. IEEE (2004)

Download references

Acknowledgements

Qiang Zhang and Hong Lai have been been supported by the National Natural Science Foundation of China (No. 61702427) and the Fundamental Research Funds for the Central Universities (XDJK2020B027), the Venture & Innovation Support Program for Chongqing Overseas Returnees (No. cx2018076), and the financial support in part by the 1000-Plan of Chongqing by Southwest University (No. SWU116007). Josef Pieprzyk has been supported by Australian Research Council (ARC) Grant DP180102199 and Polish National Science Center (NCN) Grant 2018/31/B/ST6/03003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Lai, H., Pieprzyk, J. et al. An improved quantum network communication model based on compressed tensor network states. Quantum Inf Process 21, 253 (2022). https://doi.org/10.1007/s11128-022-03609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03609-3

Navigation