Skip to main content

Advertisement

Log in

Multi-nonlocality and detection of multipartite entanglements by special quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, there has been increasing attention to the study of nonlocality of quantum networks. Contrary to the standard Bell nonlocality, quantum networks concern several independent physical sources and joint measurements, from which the generated quantum correlations are fundamental for the long-distance quantum communications. This paper examines the nonlocality of a kind of special quantum network with multipartite sources. Firstly, a simple seven partite quantum network with three tripartite sources is studied in detail. A 3-local inequality is established, and the corresponding quantum violations are discussed. Then, the results are used to detect entanglement of tripartite states. Furthermore, for \(n\ge 3\), the multilocal inequalities is extended to networks with \((2^n-1)\) parties and \((2^{n-1}-1)\) tripartite sources. Finally, the multilocal inequalities for more general networks with multipartite sources are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665 (2010)

    Article  ADS  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  5. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hensen, B., Bernien, H., Dréau, A.E., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  7. Abellán, C., Acín, A., Alarcón, A., et al.: The BIG Bell Test Collaboration Challenging local realism with human choices. Nature 557, 212–216 (2018)

    Article  Google Scholar 

  8. Kimble, H.J.: The quantum Internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  9. Tavakoli, A., Pozas-Kerstjens, A., Luo, M.X., Renou, M.O.: Bell nonlocality in networks. Rep. Prog. Phys. 85, 056001 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  10. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors’’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  11. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  12. Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)

    Article  ADS  Google Scholar 

  13. Gisin, N., Mei, Q., Tavakoli, A., Renou, M.O., Brunner, N.: All entangled pure quantum states violate the bilocality inequality. Phys. Rev. A 96, 020304(R) (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Tavakoli, A., Skrzypczyk, P., Cavalcanti, D., Acín, A.: Nonlocal correlations in the star-network configuration. Phys. Rev. A 90, 062109 (2014)

    Article  ADS  Google Scholar 

  15. Mukherjee, K., Paul, B., Sarkar, D.: Correlations in \(n\)-local scenario. Quantum Inf. Process. 14, 2025 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Renou, M.O., Bäumer, E., Boreiri, S., et al.: Genuine quantum nonlocality in the triangle network. Phys. Rev. Lett. 123, 140401 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Fritz, T.: Beyond Bell’s theorem: correlation scenarios. New J. Phys. 14, 103001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. Frey, M.: A Bell inequality for a class of multilocal ring networks. Quantum Inf. Process 16, 266 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Tavakoli, A.: Quantum correlations in connected multipartite Bell experiments. J. Phys. A Math. Theor. 49, 145304 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mukherjee, K., Paul, B., Sarkar, D.: Nontrilocality: exploiting nonlocality from three-particle systems. Phys. Rev. A 96, 022103 (2017)

    Article  ADS  Google Scholar 

  21. Luo, M.X.: Computationally efficient nonlinear Bell inequalities for quantum networks. Phys. Rev. Lett. 120, 140402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Luo, M.X.: Nonlocality of all quantum networks. Phys. Rev. A 98, 042317 (2018)

    Article  ADS  Google Scholar 

  23. Mukherjee, K., Paul, B., Roy, A.: Characterizing quantum correlations in a fixed-input \(n\)-local network scenario. Phys. Rev. A 101, 032328 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger-Horne-Zeilinger-Symmetric states. Phys. Rev. Lett. 108, 020502 (2012)

    Article  ADS  Google Scholar 

  25. Paul, B., Mukherjee, K., Sarkar, D.: Nonlocality of three-qubit Greenberger-Horne-Zeilinger-symmetric states. Phys. Rev. A 94, 032101 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (12071336, 12171290) and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20200011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Appendix A: Proof of Theorem 1

The following lemma from [14] is useful to prove Theorem 1 and some remaining results.

Lemma 7

[14, Lemma 1] Assume that \(x_{i}^k\) are non-negative real numbers, \(i=1,2,\ldots ,n\) and \(k=1,2,\ldots ,m\). Then,

$$\begin{aligned} \sum \limits _{k=1}^m \left( \prod \limits _{i=1}^n x_{i}^k\right) ^{1/n} \le \prod \limits _{i=1}^n \left( \sum \limits _{k=1}^m x_{i}^k\right) ^{1/n}. \end{aligned}$$

Proof

From the assumption, all the joint probability distributions satisfy Eqs. (3)–(4). Write

$$\begin{aligned} \left\langle A^{1,1}_{x_{1}^1}\right\rangle _{\lambda _{1}}&=\sum \limits _{a_{1}^1}(-1)^{a_{1}^1} P(a_{1}^1|x_{1}^1, \lambda _{1}),\\ \langle B_{y}\rangle _{\lambda _{1},\lambda _{2}}&=\sum \limits _{b}(-1)^{b} P(b |y, \lambda _{1},\lambda _{2}),\quad \langle C_{z}\rangle _{\lambda _{1},\lambda _{3}} =\sum \limits _{c}(-1)^{c} P(c |z, \lambda _{1},\lambda _{3}),\\ \left\langle A^{2,i}_{x_{2}^i}\right\rangle _{\lambda _{2}}&=\sum \limits _{a_{2}^i}(-1)^{a_{2}^i} P(a_{2}^i|x_{2}^i, \lambda _{2}), \\ \left\langle A^{3,i}_{x_{3}^i}\right\rangle _{\lambda _{3}}&=\sum \limits _{a_{3}^i}(-1)^{a_{3}^i} P(a_{3}^i|x_{3}^i, \lambda _{3}), \quad i=1,2. \end{aligned}$$

Then,

$$\begin{aligned} K_{X}&=\frac{1}{2^{5}} \sum \limits _{\bar{x}} g(X)\left\langle A^{1,1}_{x^1_1} B_{y_{X}} C_{z_{X}} A^{2,1}_{x^1_2} A^{2,2}_{x^2_2} A^{3,1}_{x^1_3} A^{3,2}_{x^2_3} \right\rangle \nonumber \\&=\frac{1}{2^{5}} \sum \limits _{\bar{x}} g(X) \sum \limits _{a^1_1, b, c, a^1_2,\ldots , a^2_3}(-1)^{a^1_1+b+c+a^1_2+\ldots +a^2_3} \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3})\nonumber \\&\quad \cdot P(a^1_1|x^1_1,\lambda _{1}) P(b|y_{X},\lambda _{1},\lambda _{2}) P(c|z_{X},\lambda _{1},\lambda _{3}) P(a^1_2|x^1_2,\lambda _{2}) P(a^2_2|x^2_2,\lambda _{2}) P(a^1_3|x^1_3,\lambda _{3})\nonumber \\&\quad \cdot P(a^2_3|x^2_3,\lambda _{3})\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} g(X) \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3}) \langle A^{1,1}_{x^1_1} \rangle _{\lambda _{1}} \langle B_{y_{X}}\rangle _{\lambda _{1}, \lambda _{2}} \langle C_{z_{X}}\rangle _{\lambda _{1}, \lambda _{3}}\nonumber \\&\quad \cdot \langle A^{2,1}_{x^1_2}\rangle _{\lambda _{2}} \langle A^{2,2}_{x^2_2}\rangle _{\lambda _{2}} \langle A^{3,1}_{x^1_3}\rangle _{\lambda _{3}} \langle A^{3,2}_{x^2_3}\rangle _{\lambda _{3}}\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} \prod \limits _{j=1}^{3} (-1)^{ \sum \limits _{k\in X_{j}} x_j^k} \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3}) \langle A^{1,1}_{x^1_1} \rangle _{\lambda _{1}} \langle B_{y_{X}}\rangle _{\lambda _{1}, \lambda _{2}}\nonumber \\&\quad \cdot \langle C_{z_{X}}\rangle _{\lambda _{1}, \lambda _{3}} \langle A^{2,1}_{x^1_2}\rangle _{\lambda _{2}} \langle A^{2,2}_{x^2_2}\rangle _{\lambda _{2}} \langle A^{3,1}_{x^1_3}\rangle _{\lambda _{3}} \langle A^{3,2}_{x^2_3}\rangle _{\lambda _{3}}\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} \prod \limits _{j=1}^{3} (-1)^{ \sum \limits _{k} x_j^k \delta ^{k}_{X_{j}}} \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3}) \langle A^{1,1}_{x^1_1} \rangle _{\lambda _{1}} \langle B_{y_{X}}\rangle _{\lambda _{1}, \lambda _{2}}\nonumber \\&\quad \cdot \langle C_{z_{X}}\rangle _{\lambda _{1}, \lambda _{3}} \langle A^{2,1}_{x^1_2}\rangle _{\lambda _{2}} \langle A^{2,2}_{x^2_2}\rangle _{\lambda _{2}} \langle A^{3,1}_{x^1_3}\rangle _{\lambda _{3}} \langle A^{3,2}_{x^2_3}\rangle _{\lambda _{3}}\nonumber \\&= \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3}) \frac{\sum _{x^1_1}(-1)^{x^1_1 \delta ^1_{X_{1}}} \langle A^{1,1}_{x^1_1}\rangle _{\lambda _{1}}}{2} \langle B_{y_{X}}\rangle _{\lambda _{1}, \lambda _{2}} \langle C_{z_{X}}\rangle _{\lambda _{1}, \lambda _{3}}\nonumber \\&\quad \cdot \frac{\sum _{x^1_2}(-1)^{x^1_2 \delta ^1_{X_{2}}} \langle A^{2,1}_{x^1_2}\rangle _{\lambda _{2}}}{2} \frac{\sum _{x^2_2}(-1)^{x^2_2 \delta ^2_{X_{2}}} \langle A^{2,2}_{x^2_2}\rangle _{\lambda _{2}}}{2} \frac{\sum _{x^1_3}(-1)^{x^1_3 \delta ^1_{X_{3}}} \langle A^{3,1}_{x^1_3}\rangle _{\lambda _{3}}}{2}\nonumber \\&\quad \cdot \frac{\sum _{x^3_3}(-1)^{x^2_3 \delta ^2_{X_{3}}} \langle A^{3,3}_{x^2_3}\rangle _{\lambda _{3}}}{2}\nonumber \\&= \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3}) \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+(-1)^{ \delta ^1_{X_{1}}}\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2} \langle B_{y_{X}}\rangle _{\lambda _{1}, \lambda _{2}} \langle C_{z_{X}}\rangle _{\lambda _{1}, \lambda _{3}}\nonumber \\&\quad \cdot \frac{ \langle A^{2,1}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^1_{X_{2}}} \langle A^{2,1}_{1}\rangle _{\lambda _{2}}}{2} \frac{ \langle A^{2,2}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^2_{X_{2}}} \langle A^{2,2}_{1}\rangle _{\lambda _{2}}}{2}\nonumber \\&\quad \cdot \frac{ \langle A^{3,1}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^1_{X_{3}}} \langle A^{3,1}_{1}\rangle _{\lambda _{3}}}{2} \frac{ \langle A^{3,2}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^2_{X_{3}}} \langle A^{3,2}_{1}\rangle _{\lambda _{3}}}{2}, \end{aligned}$$
(A1)

where \(\delta ^{k}_{X_{j}}=1\) if \(k\in X_{j}\), \(\delta ^{k}_{X_{j}}=0\) if \(k\notin X_{j}\), \(\forall j=1,2,3\). Note that \(|\langle B_{y_{X}}\rangle _{\lambda _{1}, \lambda _{2}}| \le 1\) and \(|\langle C_{z_{X}}\rangle _{\lambda _{1}, \lambda _{3}} | \le 1\). Thus Eq. (A1) implies

$$\begin{aligned} |K_{X}|&\le \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3}) \left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+(-1)^{ \delta ^1_{X_{1}}}\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| \\&\quad \cdot |\langle B_{y_{X}}\rangle _{\lambda _{1}, \lambda _{2}}| |\langle C_{z_{X}}\rangle _{\lambda _{1}, \lambda _{3}}|\\&\quad \cdot \left| \frac{ \langle A^{2,1}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^1_{X_{2}}} \langle A^{2,1}_{1}\rangle _{\lambda _{2}}}{2}\right| \left| \frac{ \langle A^{2,2}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^2_{X_{2}}} \langle A^{2,2}_{1}\rangle _{\lambda _{2}}}{2}\right| \\&\quad \cdot \left| \frac{ \langle A^{3,1}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^1_{X_{3}}} \langle A^{3,1}_{1}\rangle _{\lambda _{3}}}{2}\right| \left| \frac{ \langle A^{3,2}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^2_{X_{3}}} \langle A^{3,2}_{1}\rangle _{\lambda _{3}}}{2}\right| \\&\le \int \int \int \mathrm{d}\lambda _{1} \mathrm{d}\lambda _{2} \mathrm{d}\lambda _{3} P_{1}(\lambda _{1}) P_{2}(\lambda _{2}) P_{3}(\lambda _{3}) \left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+(-1)^{ \delta ^1_{X_{1}}}\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| \\&\quad \cdot \left| \frac{ \langle A^{2,1}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^1_{X_{2}}} \langle A^{2,1}_{1}\rangle _{\lambda _{2}}}{2}\right| \\&\quad \cdot \left| \frac{ \langle A^{2,2}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^2_{X_{2}}} \langle A^{2,2}_{1}\rangle _{\lambda _{2}}}{2}\right| \left| \frac{ \langle A^{3,1}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^1_{X_{3}}} \langle A^{3,1}_{1}\rangle _{\lambda _{3}}}{2}\right| \\&\quad \cdot \left| \frac{ \langle A^{3,2}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^2_{X_{3}}} \langle A^{3,2}_{1}\rangle _{\lambda _{3}}}{2}\right| \\&= \left( \int \mathrm{d}\lambda _{1} P_{1}(\lambda _{1}) |\frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+(-1)^{ \delta ^1_{X_{1}}}\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}|\right) \\&\quad \cdot \left( \int \mathrm{d}\lambda _{2} P_{2}(\lambda _{2}) \left| \frac{ \langle A^{2,1}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^1_{X_{2}}} \langle A^{2,1}_{1}\rangle _{\lambda _{2}}}{2}\right| \left| \frac{ \langle A^{2,2}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^2_{X_{2}}} \langle A^{2,2}_{1}\rangle _{\lambda _{2}}}{2}\right| \right) \\&\quad \cdot \left( \int \mathrm{d}\lambda _{3} P_{3}(\lambda _{3}) \left| \frac{ \langle A^{3,1}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^1_{X_{3}}} \langle A^{3,1}_{1}\rangle _{\lambda _{3}}}{2}\right| \left| \frac{ \langle A^{3,2}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^2_{X_{3}}} \langle A^{3,2}_{1}\rangle _{\lambda _{3}}}{2}\right| \right) . \end{aligned}$$

Using Lemma 7, we obtain that

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} |K_{X}|^{\frac{1}{3}}&\le \left( \int \mathrm{d}\lambda _{1} P_{1}(\lambda _{1}) \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} \left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+(-1)^{ \delta ^1_{X_{1}}}\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| \right) ^{\frac{1}{3}}\nonumber \\&\quad \cdot \left( \int \mathrm{d}\lambda _{2} P_{2}(\lambda _{2}) \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} \left| \frac{ \langle A^{2,1}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^1_{X_{2}}} \langle A^{2,1}_{1}\rangle _{\lambda _{2}}}{2}\right| \right. \nonumber \\&\quad \cdot \left. \left| \frac{ \langle A^{2,2}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^2_{X_{2}}} \langle A^{2,2}_{1}\rangle _{\lambda _{2}}}{2}\right| \right) ^{\frac{1}{3}}\nonumber \\&\quad \cdot \left( \int \mathrm{d}\lambda _{3} P_{3}(\lambda _{3}) \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} \left| \frac{ \langle A^{3,1}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^1_{X_{3}}} \langle A^{3,1}_{1}\rangle _{\lambda _{3}}}{2}\right| \right. \nonumber \\&\quad \cdot \left. \left| \frac{ \langle A^{3,2}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^2_{X_{3}}} \langle A^{3,2}_{1}\rangle _{\lambda _{3}}}{2}\right| \right) ^{\frac{1}{3}}. \end{aligned}$$
(A2)

Next, we separately consider three factors in the right hand of inequality (A2). It is known that \(X\in \mathbb {P}(\mathbb {N}_{L})= \mathbb {P}(\{1,2\}) =\{\emptyset , \{1\}, \{2\}, \{1,2\} \}\). Thus, in the right hand of inequality (A2), the first factor reduces to

$$\begin{aligned}&\int \mathrm{d}\lambda _{1} P_{1}(\lambda _{1}) \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} \left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+(-1)^{ \delta ^1_{X_{1}}}\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| \\&\quad = \int \mathrm{d}\lambda _{1} P_{1}(\lambda _{1}) \left( \left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| +\left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}-\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| \right. \\&\qquad +\left. \left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}+\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| +\left| \frac{\langle A^{1,1}_{0}\rangle _{\lambda _{1}}-\langle A^{1,1}_{1}\rangle _{\lambda _{1}} }{2}\right| \right) \\&\quad = \int \mathrm{d}\lambda _{1} P_{1}(\lambda _{1})\cdot 2\max \{|\langle A^{1,1}_{0}\rangle _{\lambda _{1}}|, |\langle A^{1,1}_{1}\rangle _{\lambda _{1}} | \} \le 2; \end{aligned}$$

the second factor reduces to

$$\begin{aligned}&\int \mathrm{d}\lambda _{2} P_{2}(\lambda _{2}) \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} \left| \frac{ \langle A^{2,1}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^1_{X_{2}}} \langle A^{2,1}_{1}\rangle _{\lambda _{2}}}{2}\right| \left| \frac{ \langle A^{2,2}_{0}\rangle _{\lambda _{2}}+ (-1)^{ \delta ^2_{X_{2}}} \langle A^{2,2}_{1}\rangle _{\lambda _{2}}}{2}\right| \\&\quad = \int \mathrm{d}\lambda _{2} P_{2}(\lambda _{2}) \left( \left| \frac{\langle A^{2,1}_{0}\rangle _{\lambda _{2}}+\langle A^{2,1}_{1}\rangle _{\lambda _{2}} }{2}\right| \left| \frac{\langle A^{2,2}_{0}\rangle _{\lambda _{2}}+\langle A^{2,2}_{1}\rangle _{\lambda _{2}} }{2}\right| \right. \\&\qquad +\left. \left| \frac{\langle A^{2,1}_{0}\rangle _{\lambda _{2}}-\langle A^{2,1}_{1}\rangle _{\lambda _{2}} }{2}\right| \left| \frac{\langle A^{2,2}_{0}\rangle _{\lambda _{2}}+\langle A^{2,2}_{1}\rangle _{\lambda _{2}} }{2}\right| \right. \\&\qquad +\left. \left| \frac{\langle A^{2,1}_{0}\rangle _{\lambda _{2}}+\langle A^{2,1}_{1}\rangle _{\lambda _{2}} }{2}\right| \left| \frac{\langle A^{2,2}_{0}\rangle _{\lambda _{2}}-\langle A^{2,2}_{1}\rangle _{\lambda _{2}} }{2}\right| \right. \\&\qquad +\left. \left| \frac{\langle A^{2,1}_{0}\rangle _{\lambda _{2}}-\langle A^{2,1}_{1}\rangle _{\lambda _{2}} }{2}\right| \left| \frac{\langle A^{2,2}_{0}\rangle _{\lambda _{2}}-\langle A^{2,2}_{1}\rangle _{\lambda _{2}} }{2}\right| \right) \\&\quad = \int \mathrm{d}\lambda _{2} P_{2}(\lambda _{2}) \left( \left| \frac{\langle A^{2,1}_{0}\rangle _{\lambda _{2}}+\langle A^{2,1}_{1}\rangle _{\lambda _{2}} }{2}\right| + \left| \frac{\langle A^{2,1}_{0}\rangle _{\lambda _{2}}-\langle A^{2,1}_{1}\rangle _{\lambda _{2}} }{2}\right| \right) \\&\qquad \cdot \left( \left| \frac{\langle A^{2,2}_{0}\rangle _{\lambda _{2}}+\langle A^{2,2}_{1}\rangle _{\lambda _{2}} }{2}\right| + \left| \frac{\langle A^{2,2}_{0}\rangle _{\lambda _{2}}-\langle A^{2,2}_{1}\rangle _{\lambda _{2}} }{2}\right| \right) \\&\quad = \int \mathrm{d}\lambda _{2} P_{2}(\lambda _{2}) \max \{|\langle A^{2,1}_{0}\rangle _{\lambda _{2}}|, |\langle A^{2,1}_{1}\rangle _{\lambda _{2}} | \} \max \{|\langle A^{2,2}_{0}\rangle _{\lambda _{2}}|, |\langle A^{2,2}_{1}\rangle _{\lambda _{2}} | \} \le 1; \end{aligned}$$

and similarly, the third factor reduces to

$$\begin{aligned} \int \mathrm{d}\lambda _{3} P_{3}(\lambda _{3}) \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} \left| \frac{ \langle A^{3,1}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^1_{X_{3}}} \langle A^{3,1}_{1}\rangle _{\lambda _{3}}}{2}\right| \left| \frac{ \langle A^{3,2}_{0}\rangle _{\lambda _{3}}+ (-1)^{ \delta ^2_{X_{3}}} \langle A^{3,2}_{1}\rangle _{\lambda _{3}}}{2}\right| \le 1. \end{aligned}$$

Inserting the above results into inequality (A2), one gets \(\sum _{X\in \mathbb {P}(\mathbb {N}_{L})} |K_{X}|^{\frac{1}{3}} \le 2^{\frac{1}{3}}\), as desired. \(\square \)

1.2 Appendix B: Proof of Propositions 34

Observe that for any \(X\in \mathbb {P}(\mathbb {N}_L)\), one has

$$\begin{aligned} K_{X}&\!=\! \frac{1}{2^{5}} \sum \limits _{\bar{x}} g(X) \sum \limits _{a^1_1, b, c, a^1_2,\ldots , a^2_3}(-1)^{a^1_1+b+c+a^1_2+\cdots +a^2_3} P(a^1_1,b, c, a^1_{2}, \ldots , a^2_{3}| x^1_1, y_{X}, z_{X}, x^1_{2}, \ldots , x^2_{3})\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} g(X) \sum \limits _{a^1_1, b, c, a^1_2,\ldots , a^2_3}(-1)^{a^1_1+b+c+a^1_2+\cdots +a^2_3} \mathrm {tr} \big [\big (M_{a^1_1 |x^1_1} \otimes M_{b|y_{X}} \otimes M_{c|z_{X}} \otimes M_{a^1_2 |x^1_2} \nonumber \\&\quad \otimes M_{a^2_2 |x^2_2} \otimes M_{a^1_3 |x^1_3} \otimes M_{a^2_3 |x^2_3})(\rho _{1}\otimes \rho _{2}\otimes \rho _{3} \big )\big ]\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} g(X) \mathrm {tr} \big [\big ((M_{0 |x^1_1}- M_{1 |x^1_1}) \otimes (M_{0|y_{X}}- M_{1|y_{X}}) \otimes (M_{0|z_{X}}- M_{1|z_{X}}) \nonumber \\&\quad \otimes (M_{0 |x^1_2}- M_{1 |x^1_2}) \otimes (M_{0 |x^2_2}- M_{1 |x^2_2}) \otimes (M_{0 |x^1_3}- M_{1 |x^1_3}) \otimes (M_{0 |x^2_3}- M_{1 |x^2_3})\big )\nonumber \\&\quad \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3} )\big ]\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} g(X) \mathrm {tr} \big [\big (A^{1,1}_{x_1^1} \otimes B_{y_{X}} \otimes C_{z_{X}} \otimes A^{2,1}_{x_2^1} \otimes A^{2,2}_{x_2^2} \otimes A^{3,1}_{x_3^1} \otimes A^{3,2}_{x_3^2}\big ) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3})\big ]\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} \prod \limits _{j=1}^{3} (-1)^{ \sum \limits _{k\in X_{j}} x_j^k} \mathrm {tr} [(A^{1,1}_{x_1^1} \otimes B_{y_{X}} \otimes C_{z_{X}} \otimes A^{2,1}_{x_2^1} \otimes \cdots \otimes A^{3,2}_{x_3^2}) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3})]\nonumber \\&= \frac{1}{2^{5}} \sum \limits _{\bar{x}} \prod \limits _{j=1}^{3} (-1)^{ \sum \limits _{k} x_j^k \delta ^{k}_{X_{j}}} \mathrm {tr} \big [\big (A^{1,1}_{x_1^1} \otimes B_{y_{X}} \otimes C_{z_{X}} \otimes A^{2,1}_{x_2^1} \otimes \cdots \otimes A^{3,2}_{x_3^2}\big ) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3})\big ]\nonumber \\&= \frac{1}{2^{5}} \mathrm {tr} \big [\big ((A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} ) \otimes B_{y_{X}} \otimes C_{z_{X}} \otimes (A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} )\nonumber \\&\quad \otimes (A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} )\otimes (A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} )\otimes (A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} )\big ) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3})\big ]\nonumber \\&= \mathrm {tr} \bigg [\bigg (\frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \otimes B_{y_{X}} \otimes C_{z_{X}} \otimes \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2}\nonumber \\&\quad \otimes \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2}\otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\bigg ) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3})\bigg ], \end{aligned}$$
(A3)

where \(\delta ^{k}_{X_{j}}=1\) if \(k\in X_{j}\), \(\delta ^{k}_{X_{j}}=0\) if \(k\notin X_{j}\), \(\forall j=1,2,3\).

Proof of Proposition 3

Suppose that each source \(S_i\) \((i=1,2,3)\) produces arbitrary fully separable state \(\rho _i\). Write \(\rho _1= \sum _{k} p_{k}^{(1)} (\rho _{k}^{(11)} \otimes \rho _{k}^{(12)}\otimes \rho _{k}^{(13)})\), \(\rho _2= \sum _{h} p_{h}^{(2)} (\rho _{h}^{(21)} \otimes \rho _{h}^{(22)}\otimes \rho _{h}^{(23)})\) and \(\rho _3= \sum _{l} p_{l}^{(3)} (\rho _{l}^{(31)} \otimes \rho _{l}^{(32)}\otimes \rho _{l}^{(33)})\), where \(p_{k}^{(1)} >0\), \(\sum _{k} p_{k}^{(1)}=1\), \(p_{h}^{(2)}>0\), \(\sum _{h} p_{h}^{(2)}=1\), \(p_{l}^{(3)}>0\), \(\sum _{l} p_{l}^{(3)}=1\). We will prove that these states altogether do not violate the inequality (5).

Indeed, by (A3), for these fully separable states \(\rho _i\), we have

Since \(|\mathrm {tr} [B_{y_{X}} (\rho _{k}^{(12)}\otimes \rho _{h}^{(21)})]|= |P(0|y_X)- P(1|y_X)| \le 1\) and \(|\mathrm {tr} [C_{z_{X}} (\rho _{k}^{(13)}\otimes \rho _{l}^{(31)})]|\le 1\) hold for arbitrary X, we then have

which implies

$$\begin{aligned} |K_{\emptyset }|&\le \left[ \sum _{k} p_{k}^{(1)} \left| \mathrm {tr} \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \right] \cdot \left[ \sum _{h} p_{h}^{(2)} \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \right. \\&\quad \cdot \left. \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right] \\&\quad \cdot \left[ \sum _{l} p_{l}^{(3)} \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right] ,\\ |K_{\{1\}}|&\le \left[ \sum _{k} p_{k}^{(1)} \left| \mathrm {tr} \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \right] \cdot \left[ \sum _{h} p_{h}^{(2)} \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \right. \\&\quad \cdot \left. \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right] \\&\quad \cdot \left[ \sum _{l} p_{l}^{(3)} \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right] ,\\ |K_{\{2\}}|&\le \left[ \sum _{k} p_{k}^{(1)} \left| \mathrm {tr} \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \right] \cdot \left[ \sum _{h} p_{h}^{(2)} \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \right. \\&\quad \cdot \left. \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right] \\&\quad \cdot \left[ \sum _{l} p_{l}^{(3)} \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right] \end{aligned}$$

and

$$\begin{aligned} |K_{\{1,2\}}|&\le \left[ \sum _{k} p_{k}^{(1)} \left| \mathrm {tr} \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \right] \cdot \left[ \sum _{h} p_{h}^{(2)} \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \right. \\&\quad \cdot \left. \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right] \\&\quad \cdot \left[ \sum _{l} p_{l}^{(3)} \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right] . \end{aligned}$$

It follows from Lemma 7 that

$$\begin{aligned}&\sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})} |K_{X}|^{\frac{1}{3}} = |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&\quad \le \left\{ \sum _{k} p_{k}^{(1)} \left[ 2\left| \mathrm {tr} \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| + 2\left| \mathrm {tr} \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \right] \right\} ^{\frac{1}{3}}\\&\qquad \cdot \left\{ \sum _{h} p_{h}^{(2)} \left[ \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| + \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \right. \right. \\&\qquad \cdot \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \\&\qquad +\left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| + \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \\&\qquad \left. \left. \cdot \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right] \right\} ^{\frac{1}{3}}\\&\qquad \cdot \left\{ \sum _{l} p_{l}^{(3)} \left[ \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| + \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \right. \right. \\&\qquad \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \\&\qquad \left. \left. +\left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| + \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \right. \right. \\&\qquad \left. \left. \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right] \right\} ^{\frac{1}{3}}\\&\quad = \left( \sum _{k} p_{k}^{(1)} 2\max \left\{ |\mathrm {tr} (A^{1,1}_{0} \rho _{k}^{(11)})|, |\mathrm {tr} (A^{1,1}_{1} \rho _{k}^{(11)})|\right\} \right) ^{\frac{1}{3}}\\&\qquad \cdot \left\{ \sum _{h} p_{h}^{(2)} \left[ \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| + \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}-A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \right] \cdot \left[ \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right. \right. \\&\qquad \left. \left. + \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}-A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right] \right\} ^{\frac{1}{3}}\\&\qquad \cdot \left\{ \sum _{l} p_{l}^{(3)} \left[ \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| + \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}-A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \right] \cdot \left[ \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right. \right. \\&\qquad \left. \left. + \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}-A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right] \right\} ^{\frac{1}{3}}\\&= \left( \sum _{k} p_{k}^{(1)} 2\max \{|\mathrm {tr} (A^{1,1}_{0} \rho _{k}^{(11)})|, |\mathrm {tr} (A^{1,1}_{1} \rho _{k}^{(11)})|\}\right) ^{\frac{1}{3}}\\&\qquad \cdot \left( \sum _{h} p_{h}^{(2)} \max \{|\mathrm {tr} (A^{2,1}_{0} \rho _{h}^{(22)})|, |\mathrm {tr} (A^{2,1}_{1} \rho _{h}^{(22)})|\} \cdot \max \{|\mathrm {tr} (A^{2,2}_{0} \rho _{h}^{(23)})|, |\mathrm {tr} (A^{2,2}_{1} \rho _{h}^{(23)})|\}\right) ^{\frac{1}{3}}\\&\qquad \cdot \left( \sum _{l} p_{l}^{(3)} \max \{|\mathrm {tr} (A^{3,1}_{0} \rho _{l}^{(32)})|, |\mathrm {tr} (A^{3,1}_{1} \rho _{l}^{(32)})|\} \cdot \max \{|\mathrm {tr} (A^{3,2}_{0} \rho _{l}^{(33)})|, |\mathrm {tr} (A^{3,2}_{1} \rho _{l}^{(33)})|\}\right) ^{\frac{1}{3}} \le 2^{\frac{1}{3}}, \end{aligned}$$

where the last inequality holds as \(|\mathrm {tr} (A^{1,1}_{0} \rho _{k}^{(11)})|\le 1\), \(|\mathrm {tr} (A^{1,1}_{1} \rho _{k}^{(11)})|\le 1\), \(|\mathrm {tr} (A^{2,1}_{0} \rho _{h}^{(22)})|\le 1\), \(|\mathrm {tr} (A^{2,1}_{1} \rho _{h}^{(22)})|\le 1\), \(|\mathrm {tr} (A^{2,2}_{0} \rho _{h}^{(23)})| \le 1\), \(|\mathrm {tr} (A^{2,2}_{1} \rho _{h}^{(23)})| \le 1\), \(|\mathrm {tr} (A^{3,1}_{0} \rho _{l}^{(32)})|\le 1\), \(|\mathrm {tr} (A^{3,1}_{1} \rho _{l}^{(32)})|\le 1\), \(|\mathrm {tr} (A^{3,2}_{0} \rho _{l}^{(33)})|\le 1\) and \(|\mathrm {tr} (A^{3,2}_{1} \rho _{l}^{(33)})|\le 1\). This yields that the overall network state \(\rho =\rho _1\otimes \rho _2\otimes \rho _3\) obeys the 3-local inequality (5). \(\square \)

Proof of Proposition  4

Assume that the source \(S_1\) produces \((A^{1,1}|BC)\) biseparable entangled state \(\rho _1=\sum _{k} p_{k}^{(1)} (\rho _{k}^{(11)}\otimes \rho _{k}^{(123)})\), and the sources \(S_2\), \(S_3\) produce arbitrary fully separable states \(\rho _2=\sum _{h} p_{h}^{(2)}(\rho _{h}^{(21)}\otimes \rho _{h}^{(22)}\otimes \rho _{h}^{(23)})\), \(\rho _3=\sum _{l} p_{l}^{(3)} (\rho _{l}^{(31)}\otimes \rho _{l}^{(32)}\otimes \rho _{l}^{(33)})\), where \(p_{k}^{(1)} >0\), \(\sum _{k} p_{k}^{(1)}=1\), \(p_{h}^{(2)}>0\), \(\sum _{h} p_{h}^{(2)}=1\), \(p_{l}^{(3)}>0\), \(\sum _{l} p_{l}^{(3)}=1\).

In this case, Eq. (A3) reduces to

$$\begin{aligned} K_{X}&= \mathrm {tr} \left\{ \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \otimes B_{y_{X}} \otimes C_{z_{X}} \otimes \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\right. \right. \\&\quad \otimes \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2}\\&\quad \left. \otimes \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2}\otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\right) \left[ \sum _{k} p_{k}^{(1)} (\rho _{k}^{(11)} \otimes \rho _{k}^{(123)})\right. \\&\quad \left. \left. \otimes \sum _{h} p_{h}^{(2)} (\rho _{h}^{(21)} \otimes \rho _{h}^{(22)}\otimes \rho _{h}^{(23)}) \otimes \sum _{l} p_{l}^{(3)} (\rho _{l}^{(31)} \otimes \rho _{l}^{(32)}\otimes \rho _{l}^{(33)})\right] \right\} \\&= \sum _{k} p_{k}^{(1)} \sum _{h} p_{h}^{(2)} \sum _{l} p_{l}^{(3)} \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \otimes B_{y_{X}} \otimes C_{z_{X}} \right. \right. \\&\quad \otimes \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\\&\quad \left. \otimes \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2}\otimes \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2}\otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\right) \\&\quad \left. \cdot (\rho _{k}^{(11)} \otimes \rho _{k}^{(123)}\otimes \rho _{h}^{(21)} \otimes \rho _{h}^{(22)}\otimes \rho _{h}^{(23)} \otimes \rho _{l}^{(31)} \otimes \rho _{l}^{(32)}\otimes \rho _{l}^{(33)})\right] \\&= \sum _{k} p_{k}^{(1)} \sum _{h} p_{h}^{(2)} \sum _{l} p_{l}^{(3)} \mathrm {tr} \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \\&\quad \cdot \mathrm {tr} [(B_{y_{X}}\otimes C_{z_{X}}) (\rho _{h}^{(21)}\otimes \rho _{k}^{(123)} \otimes \rho _{l}^{(31)})]\\&\quad \cdot \mathrm {tr} (\frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2} \rho _{h}^{(22)}) \cdot \mathrm {tr} \left( \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \\&\quad \cdot \mathrm {tr} \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \cdot \mathrm {tr} \left( \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) . \end{aligned}$$

As \(| \mathrm {tr} [(B_{y_{X}}\otimes C_{z_{X}}) (\rho _{h}^{(21)}\otimes \rho _{k}^{(123)} \otimes \rho _{l}^{(31)})]| = |P(0,0|y_X,z_X)- P(0,1|y_X,z_X)- P(1,0|y_X,z_X) + P(1,1|y_X,z_X)| \le 1\) holds for any X, one obtains

$$\begin{aligned} |K_{X}|&\le \sum _{k} p_{k}^{(1)} \sum _{h} p_{h}^{(2)} \sum _{l} p_{l}^{(3)} \left| \mathrm {tr} \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \\&\quad \cdot |\mathrm {tr} [(B_{y_{X}}\otimes C_{z_{X}}) (\rho _{h}^{(21)}\otimes \rho _{k}^{(123)} \otimes \rho _{l}^{(31)})]|\\&\quad \cdot \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \\&\quad \cdot \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \\&\quad \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \\&\le \sum _{k} p_{k}^{(1)} \sum _{h} p_{h}^{(2)} \sum _{l} p_{l}^{(3)} \left| \mathrm {tr} \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \\&\quad \cdot \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \\&\quad \cdot \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \cdot \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \\&\quad \cdot \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \\&= \left[ \sum _{k} p_{k}^{(1)} \left| \mathrm {tr} \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \rho _{k}^{(11)}\right) \right| \right] \\&\quad \cdot \left[ \sum _{h} p_{h}^{(2)} \left| \mathrm {tr} \left( \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2} \rho _{h}^{(22)}\right) \right| \right. \\&\quad \cdot \left. \left| \mathrm {tr} \left( \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{h}^{(23)}\right) \right| \right] \\&\quad \cdot \left[ \sum _{l} p_{l}^{(3)} \left| \mathrm {tr} \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \rho _{l}^{(32)}\right) \right| \right. \\&\quad \cdot \left. \left| \mathrm {tr} \left( \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2} \rho _{l}^{(33)}\right) \right| \right] . \end{aligned}$$

Now, by the same discussion as that of Proposition 3, one can show that such states do not violate the inequality (5). \(\square \)

Appendix C: Quantum violations of three biseparable entangled pure states in network of Fig. 3

Suppose that each source \(S_i\) \((i=1,2,3)\) emits biseparable entangled pure state \(\rho _i= |\varphi ^{i}\rangle \langle \varphi ^{i}|\). As each state \(\rho _i\) \((i=1,2,3)\) has three different bipartitions, the overall state \(\rho =\rho _1\otimes \rho _2 \otimes \rho _3\) in the network has 27 different partition combinations. For any one of 27 forms, we can find specific example to violate the inequality (5) by choosing suitable measurements.

According to the different choices of quantum states and measurements, we classify 27 cases into the following six groups.

Group 1

This group contains eight cases as listed in Table 1.

Table 1 Eight specific bipartitions for \(\rho _1\), \(\rho _2\) and \(\rho _3\)

Here, we only deal with the case 1:

$$\begin{aligned} \rho _1=|\varphi _{(12|3)}^1\rangle \langle \varphi _{(12|3)}^1|,\quad \rho _2=|\varphi _{(12|3)}^2\rangle \langle \varphi _{(12|3)}^2|,\quad \rho _3=|\varphi _{(12|3)}^3\rangle \langle \varphi _{(12|3)}^3|. \end{aligned}$$

For the other seven cases, the proofs are similar. To do this, let \(|\varphi _{(12|3)}^i\rangle =\frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\) for \(i=1,2,3\), and write \(\rho _i=\rho ^{(i)}_{12} \otimes \rho ^{(i)}_{3}\), \(i=1,2,3\). Assume that the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\), \(A^{3,2}\) perform the measurements \(\{A^{1,1}_{0}= A^{2,1}_{0}= A^{2,2}_{0}= A^{3,1}_{0}= A^{3,2}_{0}= \frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\), \(A^{1,1}_{1} =A^{2,1}_{1}= A^{2,2}_{1}= A^{3,1}_{1}= A^{3,2}_{1}= \frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\}\) and parties B, C perform the same measurements \(\{\sigma _{z} \otimes \sigma _{z}\), \(\sigma _{z} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{z}\), \(\sigma _{x} \otimes \sigma _{x}\}\). With the above states and measurements, Eq. (A3) becomes

$$\begin{aligned} K_{X}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \otimes B_{y_{X}} \otimes \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ (C_{z_{X}} \otimes \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2}) (\rho _{3}^{(1)} \otimes \rho _{12}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] . \end{aligned}$$

Note that \(X\in \{\emptyset , \{1\}, \{2\}, \{1,2\}\}\). By choosing \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), one gets

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \otimes B_{y_{\emptyset }} \otimes \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{\emptyset }} \otimes \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2}\right) (\rho _{3}^{(1)} \otimes \rho _{12}^{(3)})\right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \sigma _{z}\otimes \sigma _{z} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] =-\frac{1}{32\sqrt{2}}; \end{aligned}$$

by choosing \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1\}}}=\sigma _{z}\otimes \sigma _{x}\), one has

$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2} \otimes B_{y_{\{1\}}} \otimes \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{\{1\}}} \otimes \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2}) (\rho _{3}^{(1)} \otimes \rho _{12}^{(3)}\right) \right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \sigma _{z}\otimes \sigma _{x} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] =-\frac{1}{32\sqrt{2}}; \end{aligned}$$

by choosing \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\{2\}}}=\sigma _{x}\otimes \sigma _{z}\), one obtains

$$\begin{aligned} K_{\{2\}}&= \mathrm {tr}\left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \otimes B_{y_{\{2\}}} \otimes \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{\{2\}}} \otimes \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2}\right) (\rho _{3}^{(1)} \otimes \rho _{12}^{(3)})\right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \sigma _{x}\otimes \sigma _{z} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] =\frac{3\sqrt{3}}{32\sqrt{2}}; \end{aligned}$$

and by choosing \(B_{y_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\), \(C_{z_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\), one has

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2} \otimes B_{y_{\{1,2\}}} \otimes \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{\{1,2\}}} \otimes \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2}\right) (\rho _{3}^{(1)} \otimes \rho _{12}^{(3)})\right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \sigma _{x}\otimes \sigma _{x} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] =\frac{3\sqrt{3}}{32\sqrt{2}}. \end{aligned}$$

Thus,

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{32\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| -\frac{1}{32\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{3\sqrt{3}}{32\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{3\sqrt{3}}{32\sqrt{2}}\right| ^{\frac{1}{3}}\\&= \frac{1}{\root 6 \of {32}} (1+\sqrt{3})> 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

Group 2

This group contains eight cases as listed in Table 2.

Table 2 Eight specific bipartitions for \(\rho _1\), \(\rho _2\) and \(\rho _3\)

Still, we only discuss the case 1:

$$\begin{aligned} \rho _1=|\varphi _{(12|3)}^1\rangle \langle \varphi _{(12|3)}^1|,\quad \rho _2=|\varphi _{(12|3)}^2\rangle \langle \varphi _{(12|3)}^2|,\quad \rho _3=|\varphi _{(23|1)}^3\rangle \langle \varphi _{(23|1)}^3|. \end{aligned}$$

Take \(|\varphi _{(12|3)}^1\rangle = |\varphi _{(12|3)}^2\rangle =\frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\) and \(|\varphi _{(23|1)}^3\rangle = \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\). Write \(\rho _1=\rho ^{(1)}_{12} \otimes \rho ^{(1)}_{3}\), \(\rho _2=\rho ^{(2)}_{12} \otimes \rho ^{(2)}_{3}\) and \(\rho _3=\rho ^{(3)}_{1} \otimes \rho ^{(3)}_{23}\). Assume the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}= A^{2,2}_{0}= A^{3,1}_{0}=\frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\) and \(A^{1,1}_{1} = A^{2,1}_{1}= A^{2,2}_{1}= A^{3,1}_{1}= \frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\), while the party \(A^{3,2}\) performs the measurements \(A^{3,2}_{0}= \sigma _{z}\) and \(A^{3,2}_{1}= \sigma _{x}\). For parties B and C, their measurement choices are \(\{\sigma _{z} \otimes \sigma _{z}\), \(\sigma _{z} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{z}\), \(\sigma _{x} \otimes \sigma _{x}\}\).

In this circumstance, Eq. (A3) becomes

$$\begin{aligned} K_{X}= & {} \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \otimes B_{y_{X}} \otimes \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\cdot \mathrm {tr} [C_{z_{X}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] . \end{aligned}$$

Letting \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\); and then

$$\begin{aligned} K_{\emptyset }= & {} \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \otimes B_{y_{\emptyset }} \otimes \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\cdot \mathrm {tr} [C_{z_{\emptyset }} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\= & {} \mathrm {tr}\left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\cdot \mathrm {tr} \left[ (\sigma _{z}\otimes \sigma _{z} ) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =-\frac{1}{64}. \end{aligned}$$

Letting \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1\}}}=\sigma _{z}\otimes \sigma _{x}\), and then

$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2} \otimes B_{y_{\{1\}}} \otimes \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} [C_{z_{\{1\}}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{z}\otimes \sigma _{x} ) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =\frac{\sqrt{3}}{64}. \end{aligned}$$

Letting \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\{2\}}}=\sigma _{x}\otimes \sigma _{z}\), we get

$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \otimes B_{y_{\{2\}}} \otimes \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} [C_{z_{\{2\}}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{x}\otimes \sigma _{z} ) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] = -\frac{3}{64}. \end{aligned}$$

Letting \(B_{y_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\), one has

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2} \otimes B_{y_{\{1,2\}}} \otimes \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\right) (\rho _{12}^{(1)} \otimes \rho _{12}^{(2)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} [C_{z_{\{1,2\}}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{x}\otimes \sigma _{x} ) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =-\frac{3\sqrt{3}}{64}. \end{aligned}$$

Thus,

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{64}\right| ^{\frac{1}{3}}+ \left| \frac{\sqrt{3}}{64}\right| ^{\frac{1}{3}}+ \left| -\frac{3}{64}\right| ^{\frac{1}{3}}+ \left| -\frac{3\sqrt{3}}{64}\right| ^{\frac{1}{3}}\\&= \frac{1}{4}(1+ \root 6 \of {3}+ \root 3 \of {3}+ \sqrt{3})> 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

Group 3

This group contains two cases as listed in Table 3.

Table 3 Two specific bipartitions for \(\rho _1\), \(\rho _2\) and \(\rho _3\)

We exemplify the case 1:

$$\begin{aligned} \rho _1=|\varphi _{(12|3)}^1\rangle \langle \varphi _{(12|3)}^1|,\quad \rho _2=|\varphi _{(23|1)}^2\rangle \langle \varphi _{(23|1)}^2|,\quad \rho _3=|\varphi _{(23|1)}^3\rangle \langle \varphi _{(23|1)}^3|. \end{aligned}$$

In this circumstance, take \(|\varphi _{(12|3)}^1\rangle =\frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\) and \(|\varphi _{(23|1)}^2\rangle = |\varphi _{(23|1)}^3\rangle = \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\). Write \(\rho _1=\rho ^{(1)}_{12} \otimes \rho ^{(1)}_{3}\), \(\rho _2=\rho ^{(2)}_{1} \otimes \rho ^{(2)}_{23}\) and \(\rho _3=\rho ^{(3)}_{1} \otimes \rho ^{(3)}_{23}\). Let the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{3,1}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}= A^{3,1}_{0}=\frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\) and \(A^{1,1}_{1} = A^{2,1}_{1}= A^{3,1}_{1}= \frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\), while the parties \(A^{2,2}\), \(A^{3,2}\) perform the measurements \(A^{2,2}_{0}= A^{3,2}_{0}= \sigma _{z}\) and \(A^{2,2}_{1}=A^{3,2}_{1}= \sigma _{x}\). Assume that the measurement choices of parties B and C are \(\{\sigma _{z} \otimes \sigma _{z}\), \(\sigma _{z} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{z}\), \(\sigma _{x} \otimes \sigma _{x}\}\), respectively. Thus, Eq. (A3) reduces to

$$\begin{aligned} K_{X}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2} \otimes B_{y_{X}} \right) (\rho _{12}^{(1)} \otimes \rho _{1}^{(2)})\right] \cdot \mathrm {tr} [C_{z_{X}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] . \end{aligned}$$

By taking \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1\}}}=\sigma _{x}\otimes \sigma _{x}\), \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\) (or \(\sigma _{x}\otimes \sigma _{z}\)) and \(C_{z_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\) (or \(\sigma _{x}\otimes \sigma _{z}\)), \(B_{y_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\), respectively, one can obtain

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2} \otimes B_{y_{\emptyset }} \right) (\rho _{12}^{(1)} \otimes \rho _{1}^{(2)})\right] \cdot \mathrm {tr} [C_{z_{\emptyset }} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{z}\otimes \sigma _{z}) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =-\frac{1}{64\sqrt{2}}, \end{aligned}$$
$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\otimes B_{y_{\{1\}}} \right) (\rho _{12}^{(1)} \otimes \rho _{1}^{(2)})\right] \cdot \mathrm {tr} [C_{z_{\{1\}}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{x}\otimes \sigma _{x}) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =\frac{3\sqrt{3}}{64\sqrt{2}}, \end{aligned}$$
$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\otimes B_{y_{\{2\}}} \right) (\rho _{12}^{(1)} \otimes \rho _{1}^{(2)})\right] \cdot \mathrm {tr} [C_{z_{\{2\}}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{x}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{z}\otimes \sigma _{x}) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] -\frac{3}{64\sqrt{2}} \end{aligned}$$

and

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\otimes B_{y_{\{1,2\}}} \right) (\rho _{12}^{(1)} \otimes \rho _{1}^{(2)})\right] \cdot \mathrm {tr} [C_{z_{\{1,2\}}} ( \rho _{3}^{(1)} \otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{x}\otimes \sigma _{x}) \left( \frac{|0\rangle +\sqrt{3}|1\rangle }{2} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =\frac{3\sqrt{3}}{64\sqrt{2}}. \end{aligned}$$

Hence,

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{64\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{3\sqrt{3}}{64\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| -\frac{3}{64\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{3\sqrt{3}}{64\sqrt{2}}\right| ^{\frac{1}{3}}\\&= \frac{1}{2\root 6 \of {2}}(1+2 \sqrt{3}+ \root 3 \of {3})> 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

Group 4

This group contains four cases as listed in Table 4.

Table 4 Four specific bipartitions for \(\rho _1\), \(\rho _2\) and \(\rho _3\)

For example, for the case 1:

$$\begin{aligned} \rho _1=|\varphi _{(23|1)}^1\rangle \langle \varphi _{(23|1)}^1|,\quad \rho _2=|\varphi _{(12|3)}^2\rangle \langle \varphi _{(12|3)}^2|, \quad \rho _3=|\varphi _{(12|3)}^3\rangle \langle \varphi _{(12|3)}^3|, \end{aligned}$$

we take \(|\varphi _{(23|1)}^1\rangle = \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\) and \(|\varphi _{(12|3)}^2\rangle = |\varphi _{(12|3)}^3\rangle = \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\). Write \(\rho _1=\rho ^{(1)}_{1} \otimes \rho ^{(1)}_{23}\), \(\rho _2=\rho ^{(2)}_{12} \otimes \rho ^{(2)}_{3}\) and \(\rho _3=\rho ^{(3)}_{12} \otimes \rho ^{(3)}_{3}\). Assume that the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\), \(A^{3,2}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}= A^{2,2}_{0}=A^{3,1}_{0}=A^{3,2}_{0}=\frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\) and \(A^{1,1}_{1} = A^{2,1}_{1}=A^{2,2}_{1}= A^{3,1}_{1}=A^{3,2}_{1}= \frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\), and parties B, C perform the measurements \(\{\sigma _{z} \otimes \sigma _{z}\), \(\sigma _{z} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{z}\), \(\sigma _{x} \otimes \sigma _{x}\}\), respectively. Then, Eq. (A3) becomes

$$\begin{aligned} K_{X}&= \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\otimes B_{y_{X}}\otimes C_{z_{X}}\right. \right. \\&\quad \left. \left. \otimes \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{12}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] . \end{aligned}$$

By choosing \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{z}\) and \(C_{z_{\{1\}}}=\sigma _{z}\otimes \sigma _{x}\), \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\) and \(C_{z_{\{2\}}}=\sigma _{x}\otimes \sigma _{z}\), \(B_{y_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\), respectively, one gets

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes B_{y_{\emptyset }}\otimes C_{z_{\emptyset }} \otimes \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{12}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \right. \\&\quad \cdot \left. \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] =-\frac{1}{32\sqrt{2}}, \end{aligned}$$
$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes B_{y_{\{1\}}}\otimes C_{z_{\{1\}}} \otimes \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{12}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{x}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \right. \\&\quad \cdot \left. \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] =\frac{\sqrt{3}}{32\sqrt{2}}, \end{aligned}$$
$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes B_{y_{\{2\}}}\otimes C_{z_{\{2\}}} \otimes \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{12}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{x}\otimes \sigma _{x}\otimes \sigma _{z}\otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \right. \\&\quad \left. \cdot \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] = -\frac{3}{32\sqrt{2}} \end{aligned}$$

and

$$\begin{aligned} K_{\{1,2\}}&\!=\! \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes B_{y_{\{1,2\}}}\otimes C_{z_{\{1,2\}}} \otimes \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{12}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2} \rho _{3}^{(3)}\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x}\otimes \sigma _{x}\otimes \sigma _{x}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \right. \\&\quad \left. \cdot \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] = \frac{3\sqrt{3}}{32\sqrt{2}}. \end{aligned}$$

It follows that

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{32\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{\sqrt{3}}{32\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| -\frac{3}{32\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{3\sqrt{3}}{32\sqrt{2}}\right| ^{\frac{1}{3}}\\&= \frac{1}{2\root 6 \of {32}} (1+ \root 6 \of {3}+ \root 3 \of {3}+ \sqrt{3})> 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

Group 5

This group contains four cases as listed in Table 5.

Table 5 Four specific bipartitions for \(\rho _1\), \(\rho _2\) and \(\rho _3\)

Consider the case 1:

$$\begin{aligned} \rho _1=|\varphi _{(23|1)}^1\rangle \langle \varphi _{(23|1)}^1|,\quad \rho _2=|\varphi _{(12|3)}^2\rangle \langle \varphi _{(12|3)}^2|, \quad \rho _3=|\varphi _{(23|1)}^3\rangle \langle \varphi _{(23|1)}^3|, \end{aligned}$$

take \(|\varphi _{(23|1)}^1\rangle = |\varphi _{(23|1)}^3\rangle =\frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\) and \(|\varphi _{(12|3)}^2\rangle =\frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\). Let \(\rho _1=\rho ^{(1)}_{1} \otimes \rho ^{(1)}_{23}\), \(\rho _2=\rho ^{(2)}_{12} \otimes \rho ^{(2)}_{3}\) and \(\rho _3=\rho ^{(3)}_{1} \otimes \rho ^{(3)}_{23}\). Assume the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}= A^{2,2}_{0}=A^{3,1}_{0}=\frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\) and \(A^{1,1}_{1} = A^{2,1}_{1}=A^{2,2}_{1}= A^{3,1}_{1}=\frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\), while the party \(A^{3,2}\) performs the measurements \(A^{3,2}_{0}=\sigma _{z}\) and \(A^{3,2}_{1}=\sigma _{x}\). The measurement choices of parties B and C are \(\{\sigma _{z} \otimes \sigma _{z}\), \(\sigma _{z} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{z}\), \(\sigma _{x} \otimes \sigma _{x}\}\), respectively.

In this circumstance, Eq. (A3) reduces to

$$\begin{aligned} K_{X}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\otimes B_{y_{X}}\otimes C_{z_{X}}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] . \end{aligned}$$

Choose \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{z}\) and \(C_{z_{\{1\}}}=\sigma _{z}\otimes \sigma _{x}\), \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\) and \(C_{z_{\{2\}}}=\sigma _{x}\otimes \sigma _{z}\), \(B_{y_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\), respectively; then

$$\begin{aligned} K_{\emptyset }&=\! \mathrm {tr}\! \left[ \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \! \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes B_{y_{\emptyset }}\otimes C_{z_{\emptyset }}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{z}\right) \right. \\&\quad \left. \cdot \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =-\frac{1}{64}, \end{aligned}$$
$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes B_{y_{\{1\}}}\otimes C_{z_{\{1\}}}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{x}\right) \right. \\&\quad \left. \cdot \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] = -\frac{3}{64}, \end{aligned}$$
$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes B_{y_{\{2\}}}\otimes C_{z_{\{2\}}}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{x}\otimes \sigma _{x}\otimes \sigma _{z}\right) \right. \\&\quad \left. \cdot \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =\frac{\sqrt{3}}{64} \end{aligned}$$

and

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes B_{y_{\{1,2\}}}\otimes C_{z_{\{1,2\}}}\right) (\rho _{12}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2} \rho _{3}^{(2)}\right] \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x}\otimes \sigma _{x}\otimes \sigma _{x}\right) \right. \\&\quad \left. \cdot \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&= -\frac{3\sqrt{3}}{64}. \end{aligned}$$

Thus

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{64}\right| ^{\frac{1}{3}}+ |-\frac{3}{64}|^{\frac{1}{3}}+ \left| \frac{\sqrt{3}}{64}\right| ^{\frac{1}{3}}+ \left| -\frac{3\sqrt{3}}{64}\right| ^{\frac{1}{3}}\\&= \frac{1}{4}(1+ \root 3 \of {3}+ \root 6 \of {3}+ \sqrt{3})> 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

Group 6

This group contains 1 case as listed in Table 6.

Table 6 Only case of specific bipartition for \(\rho _1\), \(\rho _2\) and \(\rho _3\)

Take \(|\varphi _{(23|1)}^1\rangle = |\varphi _{(23|1)}^2\rangle = |\varphi _{(23|1)}^3\rangle =\frac{|00\rangle + |11\rangle }{\sqrt{2}}\otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\). Write \(\rho _1=\rho ^{(1)}_{1} \otimes \rho ^{(1)}_{23}\), \(\rho _2=\rho ^{(2)}_{1} \otimes \rho ^{(2)}_{23}\) and \(\rho _3=\rho ^{(3)}_{1} \otimes \rho ^{(3)}_{23}\). Assume the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{3,1}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}= A^{3,1}_{0}=\frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\) and \(A^{1,1}_{1} = A^{2,1}_{1}= A^{3,1}_{1}=\frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\), while the parties \(A^{2,2}\), \(A^{3,2}\) perform the measurements \(A^{2,2}_{0}=A^{3,2}_{0}=\sigma _{z}\) and \(A^{2,2}_{1}=A^{3,2}_{1}=\sigma _{x}\). Assume the measurement choices of parties B and C are \(\{\sigma _{z} \otimes \sigma _{z}\), \(\sigma _{z} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{z}\), \(\sigma _{x} \otimes \sigma _{x}\}\), respectively.

In this case, Eq. (A3) reduces to

$$\begin{aligned} K_{X}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} \left[ (B_{y_{X}}\otimes C_{z_{X}}) (\rho _{1}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] . \end{aligned}$$

By taking \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\) and \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{z}\) and \(C_{z_{\{1\}}}=\sigma _{z}\otimes \sigma _{x}\), \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\) and \(C_{z_{\{2\}}}=\sigma _{x}\otimes \sigma _{z}\) \(B_{y_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{x}\), respectively, we obtain

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} [(B_{y_{\emptyset }}\otimes C_{z_{\emptyset }}) (\rho _{1}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{z}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{z}) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =-\frac{1}{64\sqrt{2}}, \end{aligned}$$
$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} [(B_{y_{\{1\}}}\otimes C_{z_{\{1\}}}) (\rho _{1}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{x}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{x}) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}+ \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =\frac{3\sqrt{3}}{64\sqrt{2}}, \end{aligned}$$
$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} [(B_{y_{\{2\}}}\otimes C_{z_{\{2\}}}) (\rho _{1}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{z}}{\sqrt{2}} \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{x}\otimes \sigma _{z}\otimes \sigma _{z}\otimes \sigma _{x}) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}- \sigma _{x}}{2}) (\frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] =-\frac{3}{64\sqrt{2}} \end{aligned}$$

and

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\rho _{1}^{(1)}\right] \cdot \mathrm {tr} \left[ \left( \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2}\right) \rho _{23}^{(2)}\right] \\&\quad \cdot \mathrm {tr} [(B_{y_{\{1,2\}}}\otimes C_{z_{\{1,2\}}}) (\rho _{1}^{(2)}\otimes \rho _{23}^{(1)}\otimes \rho _{1}^{(3)})]\\&\quad \cdot \mathrm {tr} \left[ \left( \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) \rho _{23}^{(3)}\right] \\&= \mathrm {tr} \left[ \frac{\sigma _{x}}{\sqrt{2}} (\frac{|0\rangle + \sqrt{3}|1\rangle }{2})\right] \\&\quad \cdot \mathrm {tr} \left[ (\sigma _{x}\otimes \sigma _{x}\otimes \sigma _{x}\otimes \sigma _{x}) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|0\rangle + \sqrt{3}|1\rangle }{2}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}- \sigma _{x}}{2}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}}\right) \right] = \frac{3\sqrt{3}}{64\sqrt{2}}. \end{aligned}$$

Therefore

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{64\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{3\sqrt{3}}{64\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| -\frac{3}{64\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{3\sqrt{3}}{64\sqrt{2}}\right| ^{\frac{1}{3}}\\&= \frac{1}{2\root 6 \of {2}} (1+2 \sqrt{3} + \root 3 \of {3})> 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

In one word, for any one of 27 forms of the overall quantum state, there always exist specific examples to violate the 3-local inequality (5) by choosing suitable measurements.

Appendix D

1.1 1. Quantum violation of three GHZ states in network of Fig. 3

Let all the sources \(S_{i}\) \((i=1,2,3)\) emit three-qubit GHZ state \(\rho _i=|\mathrm {GHZ}\rangle \langle \mathrm {GHZ}|\). Assume the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\), \(A^{3,2}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}=A^{2,2}_{0}= A^{3,1}_{0}=A^{3,2}_{0}=\frac{\sigma _{x}+ \sigma _{y}}{\sqrt{2}}\), \(A^{1,1}_{1} =A^{2,1}_{1}=A^{2,2}_{1}=A^{3,1}_{1}= A^{3,2}_{1}=\frac{\sigma _{x}- \sigma _{y}}{\sqrt{2}}\). The measurement choices of parties B and C are \(\{\sigma _{x} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{y}\), \(\sigma _{y} \otimes \sigma _{x}\), \(\sigma _{y} \otimes \sigma _{y}\}\), respectively.

By Eq. (A3), taking \(B_{y_{\emptyset }}=\sigma _{x}\otimes \sigma _{x}\) and \(C_{z_{\emptyset }}=\sigma _{x}\otimes \sigma _{x}\), one gets

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}+ A^{1,1}_{1}}{2}\otimes B_{y_{\emptyset }} \otimes C_{z_{\emptyset }} \otimes \frac{ A^{2,1}_{0}+ A^{2,1}_{1}}{2}\otimes \frac{ A^{2,2}_{0}+ A^{2,2}_{1}}{2}\right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}+ A^{3,1}_{1}}{2}\otimes \frac{ A^{3,2}_{0}+ A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3})\right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{x}}{\sqrt{2}} \otimes \sigma _{x} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \sigma _{x}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&=\frac{1}{4\sqrt{2}}; \end{aligned}$$

taking \(B_{y_{\{1\}}}=\sigma _{y}\otimes \sigma _{y}\) and \(C_{z_{\{1\}}}=\sigma _{y}\otimes \sigma _{x}\) (or \(\sigma _{x}\otimes \sigma _{y}\)) gives

$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}- A^{1,1}_{1}}{2} \otimes B_{y_{\{1\}}} \otimes C_{z_{\{1\}}} \otimes \frac{ A^{2,1}_{0}- A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}+ A^{2,2}_{1}}{2} \right. \right. \\&\left. \left. \quad \otimes \frac{ A^{3,1}_{0}- A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}+ A^{3,2}_{1}}{2} \right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr} \left[ \left( \frac{ \sigma _{y}}{\sqrt{2}} \otimes \sigma _{y} \otimes \sigma _{y}\otimes \sigma _{y} \otimes \sigma _{x}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{x}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\frac{1}{4\sqrt{2}}; \end{aligned}$$

taking \(B_{y_{\{2\}}}=\sigma _{y}\otimes \sigma _{y}\) and \(C_{z_{\{2\}}}=\sigma _{y}\otimes \sigma _{y}\) yields

$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}+ A^{1,1}_{1}}{2} \otimes B_{y_{\{2\}}} \otimes C_{z_{\{2\}}} \otimes \frac{ A^{2,1}_{0}+ A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}- A^{2,2}_{1}}{2}\right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}+ A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}- A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{x}}{\sqrt{2}} \otimes \sigma _{y} \otimes \sigma _{y}\otimes \sigma _{y} \otimes \sigma _{y}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{y}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\frac{1}{4\sqrt{2}}; \end{aligned}$$

and taking \(B_{y_{\{1, 2\}}}=\sigma _{x}\otimes \sigma _{y}\) (or \(\sigma _{y}\otimes \sigma _{x}\)) and \(C_{z_{\{1, 2\}}}=\sigma _{x}\otimes \sigma _{x}\) gives

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}- A^{1,1}_{1}}{2}\otimes B_{y_{\{1,2\}}} \otimes C_{z_{\{1,2\}}} \otimes \frac{ A^{2,1}_{0}- A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}- A^{2,2}_{1}}{2} \right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}- A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}- A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{y}}{\sqrt{2}} \otimes \sigma _{y} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \sigma _{x}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{y}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\frac{1}{4\sqrt{2}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= 4\times \left| \frac{1}{4\sqrt{2}}\right| ^{\frac{1}{3}} = 2\root 6 \of {2} >2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

1.2 2. Quantum violation of three W states in network of Fig. 3

Let all the sources \(S_{i}\) \((i=1,2,3)\) produce W state \(\rho _i=|\varphi _{W}\rangle \langle \varphi _{W}|\) with \(|\varphi _{W}\rangle =\frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle )\). In this case, we assume that the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\), \(A^{3,2}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}=A^{2,2}_{0}= A^{3,1}_{0}=A^{3,2}_{0}= \frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\), \(A^{1,1}_{1} =A^{2,1}_{1}=A^{2,2}_{1}=A^{3,1}_{1}= A^{3,2}_{1}=\frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\). For parties B and C, we choose \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{x}\), \(C_{z_{\{1\}}}=\sigma _{z}\otimes \sigma _{x}\), \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\), \(C_{z_{\{2\}}}=\sigma _{x}\otimes \sigma _{z}\), and \(B_{y_{\{1, 2\}}}=\sigma _{x}\otimes \sigma _{z}\), \(C_{z_{\{1, 2\}}}=\sigma _{z}\otimes \sigma _{z}\). It follows from Eq. (A3) that

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}+ A^{1,1}_{1}}{2}\otimes B_{y_{\emptyset }} \otimes C_{z_{\emptyset }} \otimes \frac{ A^{2,1}_{0}+ A^{2,1}_{1}}{2}\otimes \frac{ A^{2,2}_{0}+ A^{2,2}_{1}}{2}\right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}+ A^{3,1}_{1}}{2}\otimes \frac{ A^{3,2}_{0}+ A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3})\right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{z}}{\sqrt{2}} \otimes \sigma _{z} \otimes \sigma _{z}\otimes \sigma _{z} \otimes \sigma _{z}\otimes \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{z}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\frac{1}{4\sqrt{2}}, \end{aligned}$$
$$\begin{aligned} K_{\{1\}}&= \mathrm {tr}\left[ \left( \frac{ A^{1,1}_{0}- A^{1,1}_{1}}{2} \otimes B_{y_{\{1\}}} \otimes C_{z_{\{1\}}} \otimes \frac{ A^{2,1}_{0}- A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}+ A^{2,2}_{1}}{2} \right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}- A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}+ A^{3,2}_{1}}{2} \right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{x}}{\sqrt{2}} \otimes \sigma _{x} \otimes \sigma _{x}\otimes \sigma _{z} \otimes \sigma _{x}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{z}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = \frac{\sqrt{2}}{27}, \end{aligned}$$
$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}+ A^{1,1}_{1}}{2} \otimes B_{y_{\{2\}}} \otimes C_{z_{\{2\}}} \otimes \frac{ A^{2,1}_{0}+ A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}- A^{2,2}_{1}}{2} \right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}+ A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}- A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{z}}{\sqrt{2}} \otimes \sigma _{z} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \sigma _{z}\otimes \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{x}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\frac{1}{9\sqrt{2}} \end{aligned}$$

and

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}- A^{1,1}_{1}}{2}\otimes B_{y_{\{1,2\}}} \otimes C_{z_{\{1,2\}}} \otimes \frac{ A^{2,1}_{0}- A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}- A^{2,2}_{1}}{2} \right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}- A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}- A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{x}}{\sqrt{2}} \otimes \sigma _{x} \otimes \sigma _{z}\otimes \sigma _{z} \otimes \sigma _{z}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{x}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = \frac{\sqrt{2}}{27}. \end{aligned}$$

Thus

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{4\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{\sqrt{2}}{27}\right| ^{\frac{1}{3}}+ \left| -\frac{1}{9\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{\sqrt{2}}{27}\right| ^{\frac{1}{3}}\\&= \frac{1}{\root 6 \of {32}} \left( 1+\frac{4}{3} + \root 3 \of {\frac{4}{9}}\right) > 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5).

Appendix E: Quantum violation of one biseparable entangled pure state and two genuine entangled pure states in network of Fig. 3

Let the source \(S_1\) produce biseparable entangled pure state \(\rho _1= |\varphi _{(12|3)}^1\rangle \langle \varphi _{(12|3)}^1|\) with \(|\varphi _{(12|3)}^1\rangle = \frac{|00\rangle + |11\rangle }{\sqrt{2}}\otimes \frac{|0\rangle +\sqrt{3}|1\rangle }{2}\), and the sources \(S_2\), \(S_3\) produce W states \(\rho _2= \rho _3= |\varphi _{W}\rangle \langle \varphi _{W}|\). Write \(\rho _1=\rho _{12}^{(1)}\otimes \rho _{3}^{(1)}\). Assume the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\), \(A^{3,2}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}= A^{2,2}_{0}=A^{3,1}_{0}=A^{3,2}_{0}=\frac{\sigma _{z}+ \sigma _{x}}{\sqrt{2}}\) and \(A^{1,1}_{1} = A^{2,1}_{1}=A^{2,2}_{1}= A^{3,1}_{1}=A^{3,2}_{1}= \frac{\sigma _{z}- \sigma _{x}}{\sqrt{2}}\). The measurement choices of parties B and C are from \(\{\sigma _{z} \otimes \sigma _{z}\), \(\sigma _{z} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{z}\), \(\sigma _{x} \otimes \sigma _{x}\}\), respectively.

In this case, Eq. (A3) reduces to

$$\begin{aligned} K_{X}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ (-1)^{\delta ^1_{X_{1}}}A^{1,1}_{1} }{2}\otimes B_{y_{X}}\otimes \frac{A^{2,1}_{0}+ (-1)^{\delta ^1_{X_{2}}}A^{2,1}_{1} }{2}\right. \right. \\&\quad \left. \left. \otimes \frac{A^{2,2}_{0}+ (-1)^{\delta ^2_{X_{2}}}A^{2,2}_{1} }{2}\right) (\rho _{12}^{(1)}\otimes \rho _2)\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{X}}\otimes \frac{A^{3,1}_{0}+ (-1)^{\delta ^1_{X_{3}}}A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ (-1)^{\delta ^2_{X_{3}}}A^{3,2}_{1} }{2}\right) (\rho _{3}^{(1)}\otimes \rho _{3})\right] . \end{aligned}$$

Choose \(B_{y_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\), \(C_{z_{\emptyset }}=\sigma _{z}\otimes \sigma _{z}\); then

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\otimes B_{y_{\emptyset }}\otimes \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2}\right) (\rho _{12}^{(1)}\otimes \rho _2)\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{\emptyset }}\otimes \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) (\rho _{3}^{(1)}\otimes \rho _{3})\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{z}\otimes \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \!\! \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \sigma _{z}\otimes \sigma _{z}\otimes \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}}\right) \right] \\&= -\frac{1}{8\sqrt{2}}. \end{aligned}$$

Choose \(B_{y_{\{1\}}}=\sigma _{x}\otimes \sigma _{x}\), \(C_{z_{\{1\}}}=\sigma _{x}\otimes \sigma _{x}\); then

$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\otimes B_{y_{\{1\}}}\otimes \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}+ A^{2,2}_{1} }{2}\right) (\rho _{12}^{(1)}\otimes \rho _2)\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{\{1\}}}\otimes \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}+ A^{3,2}_{1} }{2}\right) (\rho _{3}^{(1)}\otimes \rho _{3})\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{x}\otimes \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \sigma _{x}\otimes \sigma _{x}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{z}}{\sqrt{2}}\right) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}}\right) \right] \\&=\frac{1}{6\sqrt{6}}. \end{aligned}$$

Choose \(B_{y_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\), \(C_{z_{\{2\}}}=\sigma _{z}\otimes \sigma _{x}\); then

$$\begin{aligned} K_{\{2\}}= & {} \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}+ A^{1,1}_{1} }{2}\otimes B_{y_{\{2\}}}\otimes \frac{A^{2,1}_{0}+ A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2}\right) (\rho _{12}^{(1)}\otimes \rho _2)\right] \\&\cdot \mathrm {tr} \left[ \left( C_{z_{\{2\}}}\otimes \frac{A^{3,1}_{0}+ A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) (\rho _{3}^{(1)}\otimes \rho _{3})\right] \\= & {} \mathrm {tr} \left[ \left( \frac{\sigma _{z}}{\sqrt{2}} \otimes \sigma _{z}\otimes \sigma _{x}\otimes \frac{\sigma _{z}}{\sqrt{2}} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}} \right) \right] \\&\cdot \mathrm {tr} \left[ \left( \sigma _{z}\otimes \sigma _{x}\otimes \frac{\sigma _{z}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}}\right) \right] \\= & {} -\frac{1}{18\sqrt{2}}. \end{aligned}$$

Choose \(B_{y_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{z}\), \(C_{z_{\{1,2\}}}=\sigma _{x}\otimes \sigma _{z}\); then

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \left( \frac{A^{1,1}_{0}- A^{1,1}_{1} }{2}\otimes B_{y_{\{1,2\}}}\otimes \frac{A^{2,1}_{0}- A^{2,1}_{1} }{2}\otimes \frac{A^{2,2}_{0}- A^{2,2}_{1} }{2}\right) (\rho _{12}^{(1)}\otimes \rho _2)\right] \\&\quad \cdot \mathrm {tr} \left[ \left( C_{z_{\{1,2\}}}\otimes \frac{A^{3,1}_{0}- A^{3,1}_{1} }{2} \otimes \frac{A^{3,2}_{0}- A^{3,2}_{1} }{2}\right) (\rho _{3}^{(1)}\otimes \rho _{3})\right] \\&= \mathrm {tr} \left[ \left( \frac{\sigma _{x}}{\sqrt{2}} \otimes \sigma _{x}\otimes \sigma _{z}\otimes \frac{\sigma _{x}}{\sqrt{2}} \otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|00\rangle + |11\rangle }{\sqrt{2}} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}} \right) \right] \\&\quad \cdot \mathrm {tr} \left[ \left( \sigma _{x}\otimes \sigma _{z}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right) \left( \frac{|0\rangle + \sqrt{3}|1\rangle }{2} \otimes \frac{|100\rangle + |010\rangle + |001\rangle }{\sqrt{3}}\right) \right] \\&=\frac{1}{6\sqrt{6}}. \end{aligned}$$

Thus

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}&= |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}\\&= \left| -\frac{1}{8\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{1}{6\sqrt{6}}\right| ^{\frac{1}{3}}+ \left| -\frac{1}{18\sqrt{2}}\right| ^{\frac{1}{3}}+ \left| \frac{1}{6\sqrt{6}}\right| ^{\frac{1}{3}}\\&= \frac{1}{2\root 6 \of {2}}+ \sqrt{\frac{2}{3}}+ \frac{1}{\sqrt{2}}\cdot \frac{1}{\root 3 \of {9}}> 2^{\frac{1}{3}}, \end{aligned}$$

violating the 3-local inequality (5). This implies the non-3-local correlation nature.

Appendix F: Quantum violation of three GHZ symmetric states distributed in network of Fig. 3

Suppose all the sources \(S_i\) \((i=1,2,3)\) produce GHZ symmetric state

$$\begin{aligned} \rho _i&= \left( \frac{2p_2}{\sqrt{3}}+ p_1\right) |\mathrm {GHZ}_{+}\rangle \langle \mathrm {GHZ}_{+}| + \left( \frac{2p_2}{\sqrt{3}}- p_1\right) |\mathrm {GHZ}_{-}\rangle \langle \mathrm {GHZ}_{-}|\\&\quad +\left( 1-\frac{4p_2}{\sqrt{3}}\right) \frac{\mathbb {I}}{8}. \end{aligned}$$

Let the parties \(A^{1,1}\), \(A^{2,1}\), \(A^{2,2}\), \(A^{3,1}\), \(A^{3,2}\) perform the measurements \(A^{1,1}_{0}= A^{2,1}_{0}=A^{2,2}_{0}= A^{3,1}_{0}=A^{3,2}_{0}=\frac{\sigma _{x}+ \sigma _{y}}{\sqrt{2}}\), \(A^{1,1}_{1} =A^{2,1}_{1}=A^{2,2}_{1}=A^{3,1}_{1}= A^{3,2}_{1}=\frac{\sigma _{x}- \sigma _{y}}{\sqrt{2}}\), and parties B, C perform measurements from \(\{\sigma _{x} \otimes \sigma _{x}\), \(\sigma _{x} \otimes \sigma _{y}\), \(\sigma _{y} \otimes \sigma _{x}\), \(\sigma _{y} \otimes \sigma _{y}\}\), respectively.

According to Eq. (A3), we choose \(B_{y_{\emptyset }}=\sigma _{x}\otimes \sigma _{x}\), \(C_{z_{\emptyset }}=\sigma _{x}\otimes \sigma _{x}\), which yields

$$\begin{aligned} K_{\emptyset }&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}+ A^{1,1}_{1}}{2}\otimes B_{y_{\emptyset }} \otimes C_{z_{\emptyset }} \otimes \frac{ A^{2,1}_{0}+ A^{2,1}_{1}}{2}\otimes \frac{ A^{2,2}_{0}+ A^{2,2}_{1}}{2}\right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}+ A^{3,1}_{1}}{2}\otimes \frac{ A^{3,2}_{0}+ A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{x}}{\sqrt{2}} \otimes \sigma _{x} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \sigma _{x}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{x}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = \sqrt{2} (p_1)^3. \end{aligned}$$

Similarly, choosing \(B_{y_{\{1\}}}=\sigma _{y}\otimes \sigma _{y}\) and \(C_{z_{\{1\}}}=\sigma _{y}\otimes \sigma _{x}\) (or \(\sigma _{x}\otimes \sigma _{y}\)) gives

$$\begin{aligned} K_{\{1\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}- A^{1,1}_{1}}{2} \otimes B_{y_{\{1\}}} \otimes C_{z_{\{1\}}} \otimes \frac{ A^{2,1}_{0}- A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}+ A^{2,2}_{1}}{2}\right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}- A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}+ A^{3,2}_{1}}{2} \right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr} \left[ \left( \frac{ \sigma _{y}}{\sqrt{2}} \otimes \sigma _{y} \otimes \sigma _{y}\otimes \sigma _{y} \otimes \sigma _{x}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{x}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\sqrt{2} (p_1)^3; \end{aligned}$$

choosing \(B_{y_{\{2\}}}=\sigma _{y}\otimes \sigma _{y}\) and \(C_{z_{\{2\}}}=\sigma _{y}\otimes \sigma _{y}\) gives

$$\begin{aligned} K_{\{2\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}+ A^{1,1}_{1}}{2} \otimes B_{y_{\{2\}}} \otimes C_{z_{\{2\}}} \otimes \frac{ A^{2,1}_{0}+ A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}- A^{2,2}_{1}}{2} \right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}+ A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}- A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{x}}{\sqrt{2}} \otimes \sigma _{y} \otimes \sigma _{y}\otimes \sigma _{y} \otimes \sigma _{y}\otimes \frac{\sigma _{x}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{x}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{y}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\sqrt{2} (p_1)^3; \end{aligned}$$

choosing \(B_{y_{\{1, 2\}}}=\sigma _{x}\otimes \sigma _{y}\) (or \(\sigma _{y}\otimes \sigma _{x}\)) and \(C_{z_{\{1, 2\}}}=\sigma _{x}\otimes \sigma _{x}\) leads to

$$\begin{aligned} K_{\{1,2\}}&= \mathrm {tr} \left[ \left( \frac{ A^{1,1}_{0}- A^{1,1}_{1}}{2}\otimes B_{y_{\{1,2\}}} \otimes C_{z_{\{1,2\}}} \otimes \frac{ A^{2,1}_{0}- A^{2,1}_{1}}{2} \otimes \frac{ A^{2,2}_{0}- A^{2,2}_{1}}{2} \right. \right. \\&\quad \left. \left. \otimes \frac{ A^{3,1}_{0}- A^{3,1}_{1}}{2} \otimes \frac{ A^{3,2}_{0}- A^{3,2}_{1}}{2}\right) \cdot (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] \\&= \mathrm {tr}\left[ \left( \frac{ \sigma _{y}}{\sqrt{2}} \otimes \sigma _{y} \otimes \sigma _{x}\otimes \sigma _{x} \otimes \sigma _{x}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\otimes \frac{\sigma _{y}}{\sqrt{2}}\right. \right. \\&\quad \left. \left. \otimes \frac{\sigma _{y}}{\sqrt{2}} \right) (\rho _{1}\otimes \rho _{2}\otimes \rho _{3}) \right] = -\sqrt{2} (p_1)^3. \end{aligned}$$

Hence

$$\begin{aligned} \sum \limits _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}} = |K_{\emptyset }|^{\frac{1}{3}}+ |K_{\{1\}}|^{\frac{1}{3}}+ |K_{\{2\}}|^{\frac{1}{3}}+ |K_{\{1,2\}}|^{\frac{1}{3}}=4 \root 6 \of {2} |p_1|. \end{aligned}$$

Now it is clear that, if \(|p_1| >\frac{1}{2\root 6 \of {32}}\), then \(\sum _{X\in \mathbb {P}(\mathbb {N}_{L})}|K_{X}|^{\frac{1}{3}}> 2^{\frac{1}{3}}\), violating the 3-local inequality (5) and implying non-3-local correlations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Qi, X. & Hou, J. Multi-nonlocality and detection of multipartite entanglements by special quantum networks. Quantum Inf Process 21, 305 (2022). https://doi.org/10.1007/s11128-022-03637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03637-z

Keywords

Navigation