Abstract
We study the steady-state entanglement in a mechanically coupled double cavity with levitating rigid magnetic spheres. We derive the linearized quantum Langevin equations for steady states, solve the Lyapunov equation for the quantum noises around the steady states, and adopt the logarithmic negativity to measure the steady-state entanglement. Numerical simulations show that steady-state entanglements between various components of the system, such as the photon–photon, the magnon–magnon, and the phonon–photon entanglements, can form by choosing experimentally feasible effective detunings, dissipation rates, and coupling rates. We also calculate the tripartite entanglement between magnon–photon–phonon. The entanglement is robust against the ambient temperature up to 80 mK. This work provides a prototype platform for the study of cross-cavity entanglement and entanglement transfer and may find itself applications in quantum information processing and quantum sensing.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
References
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865
Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, New York (2010)
Hirota, O., Holevo, A.S., Caves, C.M.: Quantum Communication, Computing, and Measurement. Springer, New York (1997). https://doi.org/10.1007/978-1-4615-5923-8
Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011). https://doi.org/10.1088/0034-4885/74/10/104401
Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001). https://doi.org/10.1103/RevModPhys.73.565
Cohadon, P.F., Heidmann, A., Pinard, M.: Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999). https://doi.org/10.1103/PhysRevLett.83.3174
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://doi.org/10.1103/RevModPhys.86.1391
Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012). https://doi.org/10.1103/RevModPhys.84.621
Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007). https://doi.org/10.1103/PhysRevLett.98.030405
Hartmann, M.J., Plenio, M.B.: Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008). https://doi.org/10.1103/PhysRevLett.101.200503
Zhang, D., Wang, X.-M., Li, T.-F., Luo, X.-Q., Wu, W., Nori, F., You, J.: Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. NPJ Quantum Inf. 1(1), 15014 (2015). https://doi.org/10.1038/npjqi.2015.14
Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2(3), 1501286 (2016). https://doi.org/10.1126/sciadv.1501286
Li, J., Zhu, S.-Y., Agarwal, G.S.: Magnon–photon–phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018). https://doi.org/10.1103/PhysRevLett.121.203601
Li, J., Zhu, S.-Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys 21(8), 085001 (2019). https://doi.org/10.1088/1367-2630/ab3508
Yang, Z.-B., Yang, R.-C., Liu, H.-Y.: Generation of optical-photon-and-magnon entanglement in an optomagnonics-mechanical system. Quantum Inf. Process. 19(8), 264 (2020). https://doi.org/10.1007/s11128-020-02764-9
Yu, M., Shen, H., Li, J.: Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett. 124, 213604 (2020). https://doi.org/10.1103/PhysRevLett.124.213604
Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014). https://doi.org/10.1103/PhysRevLett.113.083603
Serga, A.A., Chumak, A.V., Hillebrands, B.: Yig magnonics. J. Phys. D 43(26), 264002 (2010). https://doi.org/10.1088/0022-3727/43/26/264002
Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, Berlin, Heidelberg (2004)
Yuen, H., Shapiro, J.: Optical communication with two-photon coherent states-part I: quantum-state propagation and quantum-noise. IEEE Trans. Inf. Theory 24(6), 657–668 (1978). https://doi.org/10.1109/TIT.1978.1055958
DeJesus, E.X., Kaufman, C.: Routh–Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–5290 (1987). https://doi.org/10.1103/PhysRevA.35.5288
Genes, C., Mari, A., Tombesi, P., Vitali, D.: Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, 032316 (2008). https://doi.org/10.1103/PhysRevA.78.032316
Yu, M., Zhu, S.-Y., Li, J.: Macroscopic entanglement of two magnon modes via quantum correlated microwave fields. J. Phys. B: Atomic Mol. Opt. Phys. 53(6), 065402 (2020). https://doi.org/10.1088/1361-6455/ab68b5
Ning, C.-X., Yin, M.: Entangling magnon and superconducting qubit by using a two-mode squeezed-vacuum microwave field. J. Opt. Soc. Am. B 38(10), 3020–3026 (2021). https://doi.org/10.1364/JOSAB.437407
Nair, J.M.P., Agarwal, G.S.: Deterministic quantum entanglement between macroscopic ferrite samples. Appl. Phys. Lett. 117(8), 084001 (2020). https://doi.org/10.1063/5.0015195
Li, J., Gröblacher, S.: Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Sci. Technol. 6(2), 024005 (2021). https://doi.org/10.1088/2058-9565/abd982
Luo, D.-W., Qian, X.-F., Yu, T.: Nonlocal magnon entanglement generation in coupled hybrid cavity systems. Opt. Lett. 46(5), 1073–1076 (2021). https://doi.org/10.1364/OL.414975
Li, J., Zhu, S.-Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, 021801 (2019). https://doi.org/10.1103/PhysRevA.99.021801
Zhang, W., Wang, D.-Y., Bai, C.-H., Wang, T., Zhang, S., Wang, H.-F.: Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields. Opt. Express 29(8), 11773–11783 (2021). https://doi.org/10.1364/OE.418531
Wang, J.: Entanglement in a cavity magnomechanical system. Quantum Inf. Process. 21(3), 105 (2022). https://doi.org/10.1007/s11128-022-03438-4
Acknowledgements
M. Z. thanks Junzhong Yang for helpful discussions. This work was supported by the National Natural Science Foundation of China under Grant No. 11475021 and the National Key Basic Research Program of China under Grant No. 2013CB922000.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, Y., Zhao, R., Chen, L. et al. Steady-state entanglement in a mechanically coupled double cavity containing magnetic spheres. Quantum Inf Process 21, 307 (2022). https://doi.org/10.1007/s11128-022-03653-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03653-z