Skip to main content
Log in

Steady-state entanglement in a mechanically coupled double cavity containing magnetic spheres

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the steady-state entanglement in a mechanically coupled double cavity with levitating rigid magnetic spheres. We derive the linearized quantum Langevin equations for steady states, solve the Lyapunov equation for the quantum noises around the steady states, and adopt the logarithmic negativity to measure the steady-state entanglement. Numerical simulations show that steady-state entanglements between various components of the system, such as the photon–photon, the magnon–magnon, and the phonon–photon entanglements, can form by choosing experimentally feasible effective detunings, dissipation rates, and coupling rates. We also calculate the tripartite entanglement between magnon–photon–phonon. The entanglement is robust against the ambient temperature up to 80 mK. This work provides a prototype platform for the study of cross-cavity entanglement and entanglement transfer and may find itself applications in quantum information processing and quantum sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  3. Hirota, O., Holevo, A.S., Caves, C.M.: Quantum Communication, Computing, and Measurement. Springer, New York (1997). https://doi.org/10.1007/978-1-4615-5923-8

    Book  MATH  Google Scholar 

  4. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011). https://doi.org/10.1088/0034-4885/74/10/104401

    Article  ADS  Google Scholar 

  5. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001). https://doi.org/10.1103/RevModPhys.73.565

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cohadon, P.F., Heidmann, A., Pinard, M.: Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999). https://doi.org/10.1103/PhysRevLett.83.3174

    Article  ADS  Google Scholar 

  7. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://doi.org/10.1103/RevModPhys.86.1391

    Article  ADS  Google Scholar 

  8. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012). https://doi.org/10.1103/RevModPhys.84.621

    Article  ADS  Google Scholar 

  9. Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007). https://doi.org/10.1103/PhysRevLett.98.030405

    Article  ADS  Google Scholar 

  10. Hartmann, M.J., Plenio, M.B.: Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008). https://doi.org/10.1103/PhysRevLett.101.200503

    Article  ADS  Google Scholar 

  11. Zhang, D., Wang, X.-M., Li, T.-F., Luo, X.-Q., Wu, W., Nori, F., You, J.: Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. NPJ Quantum Inf. 1(1), 15014 (2015). https://doi.org/10.1038/npjqi.2015.14

    Article  ADS  Google Scholar 

  12. Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2(3), 1501286 (2016). https://doi.org/10.1126/sciadv.1501286

    Article  ADS  Google Scholar 

  13. Li, J., Zhu, S.-Y., Agarwal, G.S.: Magnon–photon–phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018). https://doi.org/10.1103/PhysRevLett.121.203601

    Article  ADS  Google Scholar 

  14. Li, J., Zhu, S.-Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys 21(8), 085001 (2019). https://doi.org/10.1088/1367-2630/ab3508

    Article  ADS  Google Scholar 

  15. Yang, Z.-B., Yang, R.-C., Liu, H.-Y.: Generation of optical-photon-and-magnon entanglement in an optomagnonics-mechanical system. Quantum Inf. Process. 19(8), 264 (2020). https://doi.org/10.1007/s11128-020-02764-9

    Article  ADS  MathSciNet  Google Scholar 

  16. Yu, M., Shen, H., Li, J.: Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett. 124, 213604 (2020). https://doi.org/10.1103/PhysRevLett.124.213604

    Article  ADS  Google Scholar 

  17. Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014). https://doi.org/10.1103/PhysRevLett.113.083603

    Article  ADS  Google Scholar 

  18. Serga, A.A., Chumak, A.V., Hillebrands, B.: Yig magnonics. J. Phys. D 43(26), 264002 (2010). https://doi.org/10.1088/0022-3727/43/26/264002

    Article  ADS  Google Scholar 

  19. Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, Berlin, Heidelberg (2004)

    MATH  Google Scholar 

  20. Yuen, H., Shapiro, J.: Optical communication with two-photon coherent states-part I: quantum-state propagation and quantum-noise. IEEE Trans. Inf. Theory 24(6), 657–668 (1978). https://doi.org/10.1109/TIT.1978.1055958

    Article  ADS  MATH  Google Scholar 

  21. DeJesus, E.X., Kaufman, C.: Routh–Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–5290 (1987). https://doi.org/10.1103/PhysRevA.35.5288

    Article  ADS  MathSciNet  Google Scholar 

  22. Genes, C., Mari, A., Tombesi, P., Vitali, D.: Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, 032316 (2008). https://doi.org/10.1103/PhysRevA.78.032316

    Article  ADS  Google Scholar 

  23. Yu, M., Zhu, S.-Y., Li, J.: Macroscopic entanglement of two magnon modes via quantum correlated microwave fields. J. Phys. B: Atomic Mol. Opt. Phys. 53(6), 065402 (2020). https://doi.org/10.1088/1361-6455/ab68b5

    Article  ADS  Google Scholar 

  24. Ning, C.-X., Yin, M.: Entangling magnon and superconducting qubit by using a two-mode squeezed-vacuum microwave field. J. Opt. Soc. Am. B 38(10), 3020–3026 (2021). https://doi.org/10.1364/JOSAB.437407

    Article  ADS  Google Scholar 

  25. Nair, J.M.P., Agarwal, G.S.: Deterministic quantum entanglement between macroscopic ferrite samples. Appl. Phys. Lett. 117(8), 084001 (2020). https://doi.org/10.1063/5.0015195

    Article  ADS  Google Scholar 

  26. Li, J., Gröblacher, S.: Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Sci. Technol. 6(2), 024005 (2021). https://doi.org/10.1088/2058-9565/abd982

    Article  ADS  Google Scholar 

  27. Luo, D.-W., Qian, X.-F., Yu, T.: Nonlocal magnon entanglement generation in coupled hybrid cavity systems. Opt. Lett. 46(5), 1073–1076 (2021). https://doi.org/10.1364/OL.414975

    Article  ADS  Google Scholar 

  28. Li, J., Zhu, S.-Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, 021801 (2019). https://doi.org/10.1103/PhysRevA.99.021801

    Article  ADS  Google Scholar 

  29. Zhang, W., Wang, D.-Y., Bai, C.-H., Wang, T., Zhang, S., Wang, H.-F.: Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields. Opt. Express 29(8), 11773–11783 (2021). https://doi.org/10.1364/OE.418531

    Article  ADS  Google Scholar 

  30. Wang, J.: Entanglement in a cavity magnomechanical system. Quantum Inf. Process. 21(3), 105 (2022). https://doi.org/10.1007/s11128-022-03438-4

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Z. thanks Junzhong Yang for helpful discussions. This work was supported by the National Natural Science Foundation of China under Grant No. 11475021 and the National Key Basic Research Program of China under Grant No. 2013CB922000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhao, R., Chen, L. et al. Steady-state entanglement in a mechanically coupled double cavity containing magnetic spheres. Quantum Inf Process 21, 307 (2022). https://doi.org/10.1007/s11128-022-03653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03653-z

Keywords