Skip to main content
Log in

Quantum reversible circuits for audio watermarking based on echo hiding technique

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Watermarking is the process of embedding information into a host signal, and it’s a significant process when it enters into the copyright protection or digital works. In the near future, quantum computing will be developed and therefore the protection of quantum data will be a vital issue. This paper proposes a novel quantum reversible realization of echo hiding-based audio watermarking in the quantum representation of digital signal (QRDS). In the embedding process, according to watermark qubits, some echo frames are generated by modifying time and amplitude qubits of host audio frames. Then, a watermarked quantum audio signal is obtained; as a sum on quantum host and quantum echo audio signals. The proposed extraction phase is carried out in non-blind manner. For this purpose, a calculation is carried out on each frame of host audio signal, in which, the given frame is embedded with |0〉 and |1〉, separately, the sum of the absolute values of differences between corresponding frame of received watermarked quantum audio signal and these two calculated frames is computed. The lower sum of absolute differences indicates the correct embedded qubit in the corresponding frame. The embedding and extraction processes are implemented using quantum reversible circuits, on nanoscale. The proposed scheme has a payload of 512 at SNR = 60.31. The simulation results show that the proposed scheme has high robustness against quantum signal processing attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the repository, [https://www.musicradar.com].

References

  1. Hua, G., Huang, J., Shi, Y.Q., Goh, J., Thing, V.L.: Twenty years of digital audio watermarking—a comprehensive review. Signal Process. 128, 222–242 (2016)

    Article  Google Scholar 

  2. Hai, H., Qing, X.D., Ke, Q.: A watermarking-based authentication and image restoration in multimedia sensor networks. Int. J. High Perform. Comput. Netw. 12(1), 65–73 (2018)

    Article  Google Scholar 

  3. Mohsenfar, S.M., Mosleh, M., Barati, A.: Audio watermarking method using QR decomposition and genetic algorithm. Multimed. Tools Appl. 74(3), 759–779 (2015)

    Article  Google Scholar 

  4. Chandramouli, R., Memon, N.: Analysis of LSB based image steganography techniques. in Proceedings 2001 international conference on image processing (Cat. No. 01CH37205) (2001). IEEE.

  5. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital watermarking and steganography. Massachusetts: Morgan Kaufmann (2007)

  6. Chowdhury, R., Bhattacharyya, D., Bandyopadhyay, S. K., Kim, T.-h.: A view on LSB based audio steganography. Int. J. Security Appl. 10(2): 51–62 (2016).

  7. Erfani, Y., Siahpoush, S.: Robust audio watermarking using improved TS echo hiding. Digital Signal Process. 19(5), 809–814 (2009)

    Article  Google Scholar 

  8. Xiang, Y., Natgunanathan, I., Guo, S., Zhou, W., Nahavandi, S.: Patchwork-based audio watermarking method robust to de-synchronization attacks. IEEE/ACM Trans. Audio Speech Lang. Process. 22(9), 1413–1423 (2014)

    Article  Google Scholar 

  9. Kalantari, N.K., Akhaee, M.A., Ahadi, S.M., Amindavar, H.: Robust multiplicative patchwork method for audio watermarking. IEEE Trans. Audio Speech Lang. Process. 17(6), 1133–1141 (2009)

    Article  Google Scholar 

  10. Wang, S., Yuan, W., Wang, J., Unoki, M.: Inaudible speech watermarking based on self-compensated echo-hiding and sparse subspace clustering. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE (2019).

  11. Gruhl, D., Lu, A., Bender, W.: Echo hiding. In: International Workshop on Information Hiding. Cham: Springer (1996).

  12. Shirali-Shahreza, M.H., Shirali-Shahreza, S.: Real-time and MPEG-1 layer III compression resistant steganography in speech. IET Inf. Secur. 4(1), 1–7 (2010)

    Article  Google Scholar 

  13. Fahad Khan, M., Baig, F., Beg, S.: Steganography between Silence Intervals of Audio in Video Content Using Chaotic Maps. arXiv e-prints, 2016: p. arXiv: 1610.04346.

  14. Pourhashemi, S.M., Mosleh, M., Erfani, Y.: A novel audio watermarking scheme using ensemble-based watermark detector and discrete wavelet transform. Neural Comput. Appl. 33(11), 6161–6181 (2021)

    Article  Google Scholar 

  15. Mosleh, M., Setayeshi, S., Barekatain, B., Mosleh, M.: A novel audio watermarking scheme based on fuzzy inference system in DCT domain. Multimed. Tools Appl. 80(13), 20423–20447 (2021)

    Article  Google Scholar 

  16. Benioff, P.: The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  17. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  18. Qu, Z.G., He, H.X., Li, T.: Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio. Chin. Phys. B 27(1), 010306 (2018)

    Article  ADS  Google Scholar 

  19. Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)

    Article  MathSciNet  Google Scholar 

  20. Venegas-Andraca, S. E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation. 2003. SPIE.

  21. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang, J.: QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2016)

    Article  ADS  Google Scholar 

  24. Yan, F., Iliyasu, A.M., Guo, Y., Yang, H.: Flexible representation and manipulation of audio signals on quantum computers. Theoret. Comput. Sci. 752, 71–85 (2018)

    Article  MathSciNet  Google Scholar 

  25. Li, P., Wang, B., Xiao, H., Liu, X.: Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57(10), 3242–3270 (2018)

    Article  Google Scholar 

  26. Heidari, S., Naseri, M., Gheibi, R., Baghfalaki, M., Pourarian, M.R., Farouk, A.: A new quantum watermarking based on quantum wavelet transforms. Commun. Theor. Phys. 67(6), 732 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Luo, G., Zhou, R.G., Hu, W., Luo, J., Liu, X., Ian, H.: Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf. Process. 17(11), 1–19 (2018)

    Article  ADS  Google Scholar 

  28. Chen, K., Yan, F., Iliyasu, A. M., Zhao, J.: A quantum audio watermarking scheme. In: 2018 37th Chinese Control Conference (CCC). New York: IEEE.

  29. Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Dual quantum audio watermarking schemes based on quantum discrete cosine transform. Int. J. Theor. Phys. 58(2), 502–521 (2019)

    Article  Google Scholar 

  30. Nejad, M.Y., Mosleh, M., Heikalabad, S.R.: An LSB-based quantum audio watermarking using MSB as arbiter. Int. J. Theor. Phys. 58(11), 3828–3851 (2019)

    Article  Google Scholar 

  31. Hu, W.-W., Zhou, R.G., Luo, J., Jiang, S.-X., Luo, G.-F.: Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms. Quantum Inf. Process. 19(3), 1–29 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Nejad, M.Y., Mosleh, M., Heikalabad, S.R.: An enhanced LSB-based quantum audio watermarking scheme for nano communication networks. Multimed. Tools and Appl. 79(35), 26489–26515 (2020)

    Article  Google Scholar 

  33. Nejad, M.Y., Mosleh, M., Heikalabad, S.R.: A blind quantum audio watermarking based on quantum discrete cosine transform. J Inf. Security Appl. 55, 102495 (2020)

    Google Scholar 

  34. Fares, K., Amine, K., Salah, E.: A robust blind color image watermarking based on Fourier transform domain. Optik 208, 164562 (2020)

    Article  ADS  Google Scholar 

  35. Sanchez, M., Sun, G.H., Dong, S.H.: Correlation property of multipartite quantum image. Int. J. Theor. Phys. 58(11), 3773–3796 (2019)

    Article  MathSciNet  Google Scholar 

  36. Chaharlang, J., Mosleh, M., Rasouli Heikalabad, S.: Proposing a new and comprehensive method for quantum representation of digital audio signals. Electronic and Cyber Defense 8(4), 139–152 (2020)

    Google Scholar 

  37. Chaharlang, J., Mosleh, M., Rasouli-Heikalabad, S.: A novel quantum steganography-Steganalysis system for audio signals. Multimed. Tools Appl. 79(25), 17551–17577 (2020)

    Article  Google Scholar 

  38. Abd EL-Latif, A. A., Abd-El-Atty, B., Venegas-Andraca, S. E.: A novel image steganography technique based on quantum substitution boxes. Opt. Laser Technol. 116, 92–102 (2019).

  39. Laurel, C.O., Dong, S.H., Cruz-Irisson, M.: Steganography on quantum pixel images using Shannon entropy. Int. J. Quant. Informat. 14(05), 1650021 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Chaharlang, J., Mosleh, M., Rasouli Heikalabad, S.: A novel quantum audio steganography–steganalysis approach using LSFQ-based embedding and QKNN-based classifier. Circuits Syst. Signal Process. 39(8), 3925–3957 (2020)

    Article  Google Scholar 

  41. Quezada, L., Sun, G.H., Dong, S.H.: Quantum version of the k-NN Classifier Based on a Quantum Sorting Algorithm. Ann. Phys. 534(5), 2100449 (2022)

    Article  MathSciNet  Google Scholar 

  42. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. Asadi, M.A., Mosleh, M., Haghparast, M.: A novel reversible ternary coded decimal adder/subtractor. J. Ambient. Intell. Humaniz. Comput. 12(7), 7745–7763 (2021)

    Article  Google Scholar 

  44. Wang, D., Liu, Z.H., Zhu, W.N., Li, S.Z.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  45. Lyons, R. G.: Understanding digital signal processing, 3/E. 2011: Pearson Education India.

  46. Divshali, M.N., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)

    Article  MathSciNet  Google Scholar 

  47. Wang, S., Wang, C., Yuan, W., Wang, L., Wang, J.: Secure echo-hiding audio watermarking method based on improved PN sequence and robust principal component analysis. IET Signal Proc. 14, 229–242 (2020)

    Article  Google Scholar 

  48. Kim, H.J., Choi, Y.H.: A novel echo-hiding scheme with backward and forward kernels. IEEE Trans. Circuits Syst. Video Technol. 13(8), 885–889 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mosleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velayatipour, M., Mosleh, M., Nejad, M.Y. et al. Quantum reversible circuits for audio watermarking based on echo hiding technique. Quantum Inf Process 21, 316 (2022). https://doi.org/10.1007/s11128-022-03657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03657-9

Keywords

Navigation