Skip to main content
Log in

Variational quantum solutions to the advection–diffusion equation for applications in fluid dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Constraints in power consumption and computational power limit the skill of operational numerical weather prediction by classical computing methods. Quantum computing could potentially address both of these challenges. Herein, we present one method to perform fluid dynamics calculations that takes advantage of quantum computing. This hybrid quantum–classical method, which combines several algorithms, scales logarithmically with the dimension of the vector space and quadratically with the number of nonzero terms in the linear combination of unitary operators that specifies the linear operator describing the system of interest. As a demonstration, we apply our method to solve the advection–diffusion equation for a small system using IBM quantum computers. We find that reliable solutions of the equation can be obtained on even the noisy quantum computers available today. This and other methods that exploit quantum computers could replace some of our traditional methods in numerical weather prediction as quantum hardware continues to improve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. T. Oden, T. Belytschko, J. Fish, T. J.R. Hughes, C. Johnshon, D. Keyes, A. Laub, L. Petzold, D. Srolovitz, S. Yip and J. Bass, "Report of the National Science Foundation Blue Ribbon Panel on Simulation-Based Engineering Science," (2006)

  2. Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015)

    Article  ADS  Google Scholar 

  3. R. Loft, "Earth System Modeling Must Become More Energy Efficient," Eos, 28 (2020)

  4. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)

    Article  ADS  Google Scholar 

  5. C. Berger, A. Di Paolo, T. Forrest, S. Hadfield, N. Sawaya, M. Stęchły and K. Thibault, "Quantum technologies for climate change: Preliminary assessment," arXiv preprint arXiv:2107.05362, (2021)

  6. J. Preskill, "Quantum computing 40 years later," arXiv preprint arXiv:2106.10522, (2021)

  7. E. Pednault, J. Gunnels, D. Maslov and J. Gambetta, "On quantum supremacy," IBM Research Blog, vol. 21, (2019)

  8. Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34, 52–59 (1997)

    Article  Google Scholar 

  9. Burg, D., Ausubel, J.H.: Moore’s Law revisited through Intel chip density. PLoS ONE 16, e0256245 (2021)

    Article  Google Scholar 

  10. Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., Stadtler, S.: Can deep learning beat numerical weather prediction? Phil. Trans. R. Soc. A 379, 20200097 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Weyn, J.A., Durran, D.R., Caruana, R.: Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data. J. Adv. Model. Earth Syst. 11, 2680–2693 (2019)

    Article  ADS  Google Scholar 

  12. J. A. Weyn, D. R. Durran and R. Caruana, "Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere," Journal of Advances in Modeling Earth Systems, vol. 12, p. e2020MS002109, (2020)

  13. "Clay Math Institute," [Online]. Available: http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation.

  14. F. Gaitan, "Finding flows of a Navier–Stokes fluid through quantum computing," Quantum Information Processing , vol. 6, no. 1, (2020)

  15. F. Oz, R. K. S. S. Vuppala, K. Kara and F. Gaitan, "Solving Burgers' equation with quantum computing," Quantum Information Processing, vol. 21, no. 1, (2022)

  16. P. Garcı́a-Molina, J. Rodrı́guez-Mediavilla and J. J. Garcı́a-Ripoll, "Solving partial differential equations in quantum computers," arXiv preprint arXiv:2104.02668, 2021.

  17. Engel, A., Smith, G., Parker, S.E.: Linear embedding of nonlinear dynamical systems and prospects for efficient quantum algorithms. Phys. Plasmas 28, 062305 (2021)

    Article  ADS  Google Scholar 

  18. W. Itani, "Fluid Dynamicists Need to Add Quantum Mechanics into their Toolbox," (2021)

  19. Berry, D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A: Math. Theor. 47, 105301 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Berry, D.W., Childs, A.M., Ostrander, A., Wang, G.: Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys. 356, 1057–1081 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Xin, T., Wei, S., Cui, J., Xiao, J., Arrazola, I., Lamata, L., Kong, X., Lu, D., Solano, E., Long, G.: Quantum algorithm for solving linear differential equations: theory and experiment. Phys. Rev. A 101, 032307 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.-P. Liu, H. Ø. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa and A. M. Childs, "Efficient quantum algorithm for dissipative nonlinear differential equations," Proceed. National Acad. Sci., vol. 118, (2021)

  23. Suau, A., Staffelbach, G., Calandra, H.: Practical Quantum Computing: solving the wave equation using a quantum approach. ACM Trans. Quantum Comput. 2, 1–35 (2021)

    Article  MathSciNet  Google Scholar 

  24. Arrazola, J.M., Kalajdzievski, T., Weedbrook, C., Lloyd, S.: Quantum algorithm for nonhomogeneous linear partial differential equations. Phys. Rev. A 100, 032306 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. K. Leyton and T. J. Osborne, "A quantum algorithm to solve nonlinear differential equations," arXiv preprint arXiv:0812.4423, (2008)

  26. Childs, A.M., Liu, J.-P.: Quantum spectral methods for differential equations. Commun. Math. Phys. 375, 1427–1457 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. M. Childs, J.-P. Liu and A. Ostrander, "High-precision quantum algorithms for partial differential equations," arXiv preprint arXiv:2002.07868, (2020)

  28. Costa, P.C.S., Jordan, S., Ostrander, A.: Quantum algorithm for simulating the wave equation. Phys. Rev. A 99, 012323 (2019)

    Article  ADS  Google Scholar 

  29. S. Lloyd, G. De Palma, C. Gokler, B. Kiani, Z.-W. Liu, M. Marvian, F. Tennie and T. Palmer, "Quantum algorithm for nonlinear differential equations," arXiv preprint arXiv:2011.06571, (2020)

  30. Kyriienko, O., Paine, A.E., Elfving, V.E.: Solving nonlinear differential equations with differentiable quantum circuits. Phys. Rev. A 103, 052416 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46, 1920–1950 (2017)

    Article  MathSciNet  Google Scholar 

  32. Lubasch, M., Joo, J., Moinier, P., Kiffner, M., Jaksch, D.: "Variational quantum algorithms for nonlinear problems," Physical Review A, 101, p. 010301 (2020)

  33. Gourianov, N., Lubasch, M., Dolgov, S.: "A quantum-inspired approach to exploit turbulence structure," Nat Comput Sci, 2, p. 30–37 (2022). https://doi.org/10.1038/s43588-021-00181-1

  34. Budinski, L.: "Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method," Quantum Inf Process, 20, p. 57 (2021). https://doi.org/10.1007/s11128-021-02996-3

  35. Budinski, L.: "Quantum algorithm for the Navier–Stokes equations by using the streamfunction-vorticity formulation and the lattice Boltzmann method," International Journal of Quantum Information, 20, p. 2150039 (2022). https://doi.org/10.1142/S0219749921500398

  36. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nature Commun. 5, 1–7 (2014)

    Article  Google Scholar 

  37. J. Gambetta, I. Faro and K. Wehden, "IBM’s roadmap for building an open quantum software ecosystem," IBM, 4 (2021)

  38. D. Gunlycke, M. C. Palenik, A. R. Emmert and S. A. Fischer, "Efficient algorithm for generating Pauli coordinates for an arbitrary linear operator," arXiv preprint arXiv:2011.08942, (2020)

  39. C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio and P. J. Coles, "Variational quantum linear solver," arXiv preprint arXiv:1909.05820, (2019)

  40. Andrea, "Pennylane," 20 January 2021. [Online]. Available: https://pennylane.ai/qml/demos/tutorial_vqls.html.

  41. "IBM Quantum," 2021. [Online]. Available: https://quantum-computing.ibm.com/.

  42. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1–12 (2021)

    Article  Google Scholar 

  43. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2, 1900070 (2019)

    Article  Google Scholar 

  44. Spall, J.C.: An overview of the simultaneous perturbation method for efficient optimization. J. Hopkins APL Tech. Dig. 19, 482–492 (1998)

    Google Scholar 

  45. Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34, 817–823 (1998)

    Article  ADS  Google Scholar 

  46. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RD, DG, CAR, and JDD has been supported by the Office of Naval Research (ONR) through the NRL Base Program, PE 0601153N. We acknowledge quantum computing resources from IBM through a collaboration with the Air Force Research Laboratory (AFRL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Demirdjian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statement

Due to confidentiality agreements, supporting data can only be made available to bona fide researchers subject to a non-disclosure agreement. Details of the data and how to request access are available from Reuben Demirdjian at the U.S. Naval Research Laboratory.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirdjian, R., Gunlycke, D., Reynolds, C.A. et al. Variational quantum solutions to the advection–diffusion equation for applications in fluid dynamics. Quantum Inf Process 21, 322 (2022). https://doi.org/10.1007/s11128-022-03667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03667-7

Keywords