Skip to main content
Log in

Experimental demonstration of the dynamics of quantum coherence evolving under a PT-symmetric Hamiltonian on an NMR quantum processor

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we study the dynamics of quantum coherence (total coherence, global coherence and local coherence) evolving under a local PT-symmetric Hamiltonian in maximally entangled bipartite and tripartite states. Our results indicate that quantum coherence in the bipartite state oscillates in the unbroken phase regime of the PT-symmetric Hamiltonian. Interestingly, in the broken phase regime, while the global coherence decays exponentially, the local and total coherences enter a “freezing” regime where they attain a stable value over time. A similar pattern is observed for the dynamics of total and local coherences in the maximally entangled tripartite state, while the dynamics of global coherence in this state differs from that of the bipartite state. Our study provides some novel insights into the independent contributions of global and local coherence to the freezing and oscillatory behavior of the total quantum coherence in both the unbroken and the broken phases, respectively. These results were experimentally validated for a maximally entangled bipartite state on a three-qubit nuclear magnetic resonance (NMR) quantum processor, with one of the qubits acting as an ancilla. The experimental results match well with the theoretical predictions, up to experimental errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(PT\) symmetry. Phys. Rev. Lett. 80, 5243 (1998). https://doi.org/10.1103/PhysRevLett.80.5243

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Progress Phys. 70(6), 947 (2007). https://doi.org/10.1088/0034-4885/70/6/r03

    Article  ADS  MathSciNet  Google Scholar 

  3. Özdemir, ŞK., Rotter, S., Nori, F., Yang, L.: Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18(8), 783 (2019). https://doi.org/10.1038/s41563-019-0304-9

    Article  ADS  Google Scholar 

  4. El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and PT symmetry. Nat. Phys. 14(1), 11 (2018). https://doi.org/10.1038/nphys4323

    Article  Google Scholar 

  5. Jentschura, U.D., Surzhykov, A., Lubasch, M., Zinn-Justin, J.: Structure, time propagation and dissipative terms for resonances. J. Phys. A: Math. Theor. 41(9), 095302 (2008). https://doi.org/10.1088/1751-8113/41/9/095302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Noble, J., Lubasch, M., Stevens, J., Jentschura, U.: Diagonalization of complex symmetric matrices: generalized Householder reflections, iterative deflation and implicit shifts. Comput. Phys. Commun. 221, 304 (2017). https://doi.org/10.1016/j.cpc.2017.06.014

    Article  ADS  MathSciNet  Google Scholar 

  7. Li, J., Harter, A.K., Liu, J., de Melo, L., Joglekar, Y.N., Luo, L.: Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 10(1), 855 (2019). https://doi.org/10.1038/s41467-019-08596-1

    Article  ADS  Google Scholar 

  8. Quijandría, F., Naether, U., Özdemir, S.K., Nori, F., Zueco, D.: \(\cal{PT} \)-symmetric circuit QED. Phys. Rev. A 97, 053846 (2018). https://doi.org/10.1103/PhysRevA.97.053846

    Article  ADS  Google Scholar 

  9. Naghiloo, M., Abbasi, M., Joglekar, Y.N., Murch, K.W.: Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15(12), 1232 (2019). https://doi.org/10.1038/s41567-019-0652-z

    Article  Google Scholar 

  10. Pick, A., Silberstein, S., Moiseyev, N., Bar-Gill, N.: Robust mode conversion in NV centers using exceptional points. Phys. Rev. Res. 1, 013015 (2019). https://doi.org/10.1103/PhysRevResearch.1.013015

    Article  Google Scholar 

  11. Wu, Y., Liu, W., Geng, J., Song, X., Ye, X., Duan, C.K., Rong, X., Du, J.: Observation of parity-time symmetry breaking in a single-spin system. Science 364(6443), 878 (2019). https://doi.org/10.1126/science.aaw8205

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6(3), 192 (2010). https://doi.org/10.1038/nphys1515

    Article  Google Scholar 

  13. Klauck, F., Teuber, L., Ornigotti, M., Heinrich, M., Scheel, S., Szameit, A.: Observation of PT-symmetric quantum interference. Nat. Photon. 13(12), 883 (2019). https://doi.org/10.1038/s41566-019-0517-0

    Article  ADS  Google Scholar 

  14. Wen, J., Zheng, C., Kong, X., Wei, S., Xin, T., Long, G.: Experimental demonstration of a digital quantum simulation of a general \(\cal{PT} \)-symmetric system. Phys. Rev. A 99, 062122 (2019). https://doi.org/10.1103/PhysRevA.99.062122

    Article  ADS  Google Scholar 

  15. Wen, J., Qin, G., Zheng, C., Wei, S., Kong, X., Xin, T., Long, G.: Observation of information flow in the anti-PT symmetric system with nuclear spins. NPJ Quant. Inf. 6(1), 28 (2020). https://doi.org/10.1038/s41534-020-0258-4

    Article  ADS  Google Scholar 

  16. Chen, S.L., Chen, G.Y., Chen, Y.N.: Increase of entanglement by local \(\cal{PT} \)-symmetric operations. Phys. Rev. A 90, 054301 (2014). https://doi.org/10.1103/PhysRevA.90.054301

    Article  ADS  Google Scholar 

  17. Wang, Y.Y., Fang, M.F.: Enhancing and protecting quantum correlations of a two-qubit entangled system via non-Hermitian operation. Quant. Inf. Proc. 17(8), 208 (2018). https://doi.org/10.1007/s11128-018-1977-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local \(\cal{P} \cal{T} \) Symmetry Violates the No-Signaling Principle. Phys. Rev. Lett. 112, 130404 (2014). https://doi.org/10.1103/PhysRevLett.112.130404

    Article  ADS  Google Scholar 

  19. Tang, J.S., Wang, Y.T., Yu, S., He, D.Y., Xu, J.S., Liu, B.H., Chen, G., Sun, Y.N., Sun, K., Han, Y.J., Li, C.F., Guo, G.C.: Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system. Nat. Photon. 10(10), 642 (2016). https://doi.org/10.1038/nphoton.2016.144

    Article  ADS  Google Scholar 

  20. Günther, U., Samsonov, B.F.: Naimark-Dilated \(\cal{P} \cal{T} \)-Symmetric Brachistochrone. Phys. Rev. Lett. 101, 230404 (2008). https://doi.org/10.1103/PhysRevLett.101.230404

    Article  ADS  MathSciNet  Google Scholar 

  21. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian Quantum Mechanics. Phys. Rev. Lett. 98, 040403 (2007). https://doi.org/10.1103/PhysRevLett.98.040403

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kawabata, K., Ashida, Y., Ueda, M.: Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett. 119, 190401 (2017). https://doi.org/10.1103/PhysRevLett.119.190401

    Article  ADS  Google Scholar 

  23. Xiao, L., Wang, K., Zhan, X., Bian, Z., Kawabata, K., Ueda, M., Yi, W., Xue, P.: Observation of critical phenomena in parity-time-symmetric quantum dynamics. Phys. Rev. Lett. 123, 230401 (2019). https://doi.org/10.1103/PhysRevLett.123.230401

    Article  ADS  Google Scholar 

  24. Naikoo, J., Kumari, S., Banerjee, S., Pan, A.K.: PT-symmetric evolution, coherence and violation of Leggett–Garg inequalities. J. Phys. A: Math. Ther. 54(27), 275303 (2021). https://doi.org/10.1088/1751-8121/ac0546

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, W.C., Zhou, Y.L., Zhang, H.L., Zhang, J., Zhang, M.C., Xie, Y., Wu, C.W., Chen, T., Ou, B.Q., Wu, W., Jing, H., Chen, P.X.: Observation of \(\cal{PT} \)-symmetric quantum coherence in a single-ion system. Phys. Rev. A 103, L020201 (2021). https://doi.org/10.1103/PhysRevA.103.L020201

    Article  ADS  Google Scholar 

  26. Fang, Y.L., Zhao, J.L., Zhang, Y., Chen, D.X., Wu, Q.C., Zhou, Y.H., Yang, C.P., Nori, F.: Experimental demonstration of coherence flow in PT- and anti-PT-symmetric systems. Commun. Phys. 4(1), 223 (2021). https://doi.org/10.1038/s42005-021-00728-8

    Article  Google Scholar 

  27. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying Coherence. Phys. Rev. Lett. 113, 140401 (2014). https://doi.org/10.1103/PhysRevLett.113.140401

    Article  ADS  Google Scholar 

  28. Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016). https://doi.org/10.1103/PhysRevA.93.032136

    Article  ADS  Google Scholar 

  29. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016). https://doi.org/10.1103/PhysRevA.93.012110

    Article  ADS  MathSciNet  Google Scholar 

  30. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015). https://doi.org/10.1103/PhysRevA.91.042120

    Article  ADS  Google Scholar 

  31. Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016). https://doi.org/10.1103/PhysRevA.94.022329

    Article  ADS  Google Scholar 

  32. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016). https://doi.org/10.1103/PhysRevLett.116.150504

    Article  ADS  Google Scholar 

  33. Cao, H., Radhakrishnan, C., Su, M., Ali, M.M., Zhang, C., Huang, Y.F., Byrnes, T., Li, C.F., Guo, G.C.: Fragility of quantum correlations and coherence in a multipartite photonic system. Phys. Rev. A 102, 012403 (2020). https://doi.org/10.1103/PhysRevA.102.012403

    Article  ADS  Google Scholar 

  34. Le Duc, V., Nowotarski, M., Kalaga, J.K.: The bipartite and tripartite entanglement in PT-symmetric system. Symmetry 13(2), 1 (2021). https://doi.org/10.3390/sym13020203

    Article  Google Scholar 

  35. Wen, J., Zheng, C., Ye, Z., Xin, T., Long, G.: Stable states with nonzero entropy under broken \(\cal{PT} \) symmetry. Phys. Rev. Res. 3, 013256 (2021). https://doi.org/10.1103/PhysRevResearch.3.013256

    Article  Google Scholar 

  36. Ding, Z., Liu, R., Radhakrishnan, C., Ma, W., Peng, X., Wang, Y., Byrnes, T., Shi, F., Du, J.: Experimental study of quantum coherence decomposition and trade-off relations in a tripartite system. NPJ Quant. Inf. 7(1), 145 (2021). https://doi.org/10.1038/s41534-021-00485-0

    Article  ADS  Google Scholar 

  37. Zheng, C.: Duality quantum simulation of a general parity-time-symmetric two-level system. Europhys. Lett. 123(4), 40002 (2018). https://doi.org/10.1209/0295-5075/123/40002

    Article  ADS  Google Scholar 

  38. Gui-Lu, L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45(5), 825 (2006). https://doi.org/10.1088/0253-6102/45/5/013

    Article  ADS  MathSciNet  Google Scholar 

  39. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of NMR in One and Two Dimensions. Clarendon Press (1990)

  40. Cory, D.G., Price, M.D., Havel, T.F.: Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Physica D: Nonlinear Phenomena 120(1), 82 (1998). https://doi.org/10.1016/S0167-2789(98)00046-3

    Article  ADS  Google Scholar 

  41. Mitra, A., Sivapriya, K., Kumar, A.: Experimental implementation of a three qubit quantum game with corrupt source using nuclear magnetic resonance quantum information processor. J. Magn. Reson. 187(2), 306 (2007). https://doi.org/10.1016/j.jmr.2007.05.013

    Article  ADS  Google Scholar 

  42. Uhlmann, A.: The transition probability in the state space of a \(*\)-algebra. Rep. Math. Phys. 9(2), 273 (1976). https://doi.org/10.1016/0034-4877(76)90060-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Optics 41(12), 2315 (1994). https://doi.org/10.1080/09500349414552171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Gaikwad, A., Dorai, K.: True experimental reconstruction of quantum states and processes via convex optimization. Quant. Inf. Proc. 20(1), 19 (2021). https://doi.org/10.1007/s11128-020-02930-z

    Article  MathSciNet  Google Scholar 

  45. Leskowitz, G.M., Mueller, L.J.: State interrogation in nuclear magnetic resonance quantum-information processing. Phys. Rev. A 69, 052302 (2004). https://doi.org/10.1103/PhysRevA.69.052302

    Article  ADS  Google Scholar 

  46. Wei, B.B.: Quantum work relations and response theory in parity-time-symmetric quantum systems. Phys. Rev. E 97, 012114 (2018). https://doi.org/10.1103/PhysRevE.97.012114

    Article  ADS  Google Scholar 

  47. Deffner, S., Saxena, A.: Jarzynski equality in \(\cal{P} \cal{T} \)-symmetric quantum mechanics. Phys. Rev. Lett. 114, 150601 (2015). https://doi.org/10.1103/PhysRevLett.114.150601

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

All the experiments were performed on a Bruker Avance-III 600 MHz FT-NMR spectrometer at the NMR Research Facility of IISER Mohali. A. acknowledges financial support from DST/ICPS/QuST/Theme-1/2019/Q-68. K .D. acknowledges financial support from DST/ICPS/QuST/Theme-2/2019/Q-74.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Dorai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, A., Dorai, K. & Arvind Experimental demonstration of the dynamics of quantum coherence evolving under a PT-symmetric Hamiltonian on an NMR quantum processor. Quantum Inf Process 21, 329 (2022). https://doi.org/10.1007/s11128-022-03669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03669-5

Keywords