Abstract
In this work, we study the dynamics of quantum coherence (total coherence, global coherence and local coherence) evolving under a local PT-symmetric Hamiltonian in maximally entangled bipartite and tripartite states. Our results indicate that quantum coherence in the bipartite state oscillates in the unbroken phase regime of the PT-symmetric Hamiltonian. Interestingly, in the broken phase regime, while the global coherence decays exponentially, the local and total coherences enter a “freezing” regime where they attain a stable value over time. A similar pattern is observed for the dynamics of total and local coherences in the maximally entangled tripartite state, while the dynamics of global coherence in this state differs from that of the bipartite state. Our study provides some novel insights into the independent contributions of global and local coherence to the freezing and oscillatory behavior of the total quantum coherence in both the unbroken and the broken phases, respectively. These results were experimentally validated for a maximally entangled bipartite state on a three-qubit nuclear magnetic resonance (NMR) quantum processor, with one of the qubits acting as an ancilla. The experimental results match well with the theoretical predictions, up to experimental errors.








Similar content being viewed by others
Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(PT\) symmetry. Phys. Rev. Lett. 80, 5243 (1998). https://doi.org/10.1103/PhysRevLett.80.5243
Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Progress Phys. 70(6), 947 (2007). https://doi.org/10.1088/0034-4885/70/6/r03
Özdemir, ŞK., Rotter, S., Nori, F., Yang, L.: Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18(8), 783 (2019). https://doi.org/10.1038/s41563-019-0304-9
El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and PT symmetry. Nat. Phys. 14(1), 11 (2018). https://doi.org/10.1038/nphys4323
Jentschura, U.D., Surzhykov, A., Lubasch, M., Zinn-Justin, J.: Structure, time propagation and dissipative terms for resonances. J. Phys. A: Math. Theor. 41(9), 095302 (2008). https://doi.org/10.1088/1751-8113/41/9/095302
Noble, J., Lubasch, M., Stevens, J., Jentschura, U.: Diagonalization of complex symmetric matrices: generalized Householder reflections, iterative deflation and implicit shifts. Comput. Phys. Commun. 221, 304 (2017). https://doi.org/10.1016/j.cpc.2017.06.014
Li, J., Harter, A.K., Liu, J., de Melo, L., Joglekar, Y.N., Luo, L.: Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 10(1), 855 (2019). https://doi.org/10.1038/s41467-019-08596-1
Quijandría, F., Naether, U., Özdemir, S.K., Nori, F., Zueco, D.: \(\cal{PT} \)-symmetric circuit QED. Phys. Rev. A 97, 053846 (2018). https://doi.org/10.1103/PhysRevA.97.053846
Naghiloo, M., Abbasi, M., Joglekar, Y.N., Murch, K.W.: Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15(12), 1232 (2019). https://doi.org/10.1038/s41567-019-0652-z
Pick, A., Silberstein, S., Moiseyev, N., Bar-Gill, N.: Robust mode conversion in NV centers using exceptional points. Phys. Rev. Res. 1, 013015 (2019). https://doi.org/10.1103/PhysRevResearch.1.013015
Wu, Y., Liu, W., Geng, J., Song, X., Ye, X., Duan, C.K., Rong, X., Du, J.: Observation of parity-time symmetry breaking in a single-spin system. Science 364(6443), 878 (2019). https://doi.org/10.1126/science.aaw8205
Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6(3), 192 (2010). https://doi.org/10.1038/nphys1515
Klauck, F., Teuber, L., Ornigotti, M., Heinrich, M., Scheel, S., Szameit, A.: Observation of PT-symmetric quantum interference. Nat. Photon. 13(12), 883 (2019). https://doi.org/10.1038/s41566-019-0517-0
Wen, J., Zheng, C., Kong, X., Wei, S., Xin, T., Long, G.: Experimental demonstration of a digital quantum simulation of a general \(\cal{PT} \)-symmetric system. Phys. Rev. A 99, 062122 (2019). https://doi.org/10.1103/PhysRevA.99.062122
Wen, J., Qin, G., Zheng, C., Wei, S., Kong, X., Xin, T., Long, G.: Observation of information flow in the anti-PT symmetric system with nuclear spins. NPJ Quant. Inf. 6(1), 28 (2020). https://doi.org/10.1038/s41534-020-0258-4
Chen, S.L., Chen, G.Y., Chen, Y.N.: Increase of entanglement by local \(\cal{PT} \)-symmetric operations. Phys. Rev. A 90, 054301 (2014). https://doi.org/10.1103/PhysRevA.90.054301
Wang, Y.Y., Fang, M.F.: Enhancing and protecting quantum correlations of a two-qubit entangled system via non-Hermitian operation. Quant. Inf. Proc. 17(8), 208 (2018). https://doi.org/10.1007/s11128-018-1977-8
Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local \(\cal{P} \cal{T} \) Symmetry Violates the No-Signaling Principle. Phys. Rev. Lett. 112, 130404 (2014). https://doi.org/10.1103/PhysRevLett.112.130404
Tang, J.S., Wang, Y.T., Yu, S., He, D.Y., Xu, J.S., Liu, B.H., Chen, G., Sun, Y.N., Sun, K., Han, Y.J., Li, C.F., Guo, G.C.: Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system. Nat. Photon. 10(10), 642 (2016). https://doi.org/10.1038/nphoton.2016.144
Günther, U., Samsonov, B.F.: Naimark-Dilated \(\cal{P} \cal{T} \)-Symmetric Brachistochrone. Phys. Rev. Lett. 101, 230404 (2008). https://doi.org/10.1103/PhysRevLett.101.230404
Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian Quantum Mechanics. Phys. Rev. Lett. 98, 040403 (2007). https://doi.org/10.1103/PhysRevLett.98.040403
Kawabata, K., Ashida, Y., Ueda, M.: Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett. 119, 190401 (2017). https://doi.org/10.1103/PhysRevLett.119.190401
Xiao, L., Wang, K., Zhan, X., Bian, Z., Kawabata, K., Ueda, M., Yi, W., Xue, P.: Observation of critical phenomena in parity-time-symmetric quantum dynamics. Phys. Rev. Lett. 123, 230401 (2019). https://doi.org/10.1103/PhysRevLett.123.230401
Naikoo, J., Kumari, S., Banerjee, S., Pan, A.K.: PT-symmetric evolution, coherence and violation of Leggett–Garg inequalities. J. Phys. A: Math. Ther. 54(27), 275303 (2021). https://doi.org/10.1088/1751-8121/ac0546
Wang, W.C., Zhou, Y.L., Zhang, H.L., Zhang, J., Zhang, M.C., Xie, Y., Wu, C.W., Chen, T., Ou, B.Q., Wu, W., Jing, H., Chen, P.X.: Observation of \(\cal{PT} \)-symmetric quantum coherence in a single-ion system. Phys. Rev. A 103, L020201 (2021). https://doi.org/10.1103/PhysRevA.103.L020201
Fang, Y.L., Zhao, J.L., Zhang, Y., Chen, D.X., Wu, Q.C., Zhou, Y.H., Yang, C.P., Nori, F.: Experimental demonstration of coherence flow in PT- and anti-PT-symmetric systems. Commun. Phys. 4(1), 223 (2021). https://doi.org/10.1038/s42005-021-00728-8
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying Coherence. Phys. Rev. Lett. 113, 140401 (2014). https://doi.org/10.1103/PhysRevLett.113.140401
Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016). https://doi.org/10.1103/PhysRevA.93.032136
Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016). https://doi.org/10.1103/PhysRevA.93.012110
Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015). https://doi.org/10.1103/PhysRevA.91.042120
Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016). https://doi.org/10.1103/PhysRevA.94.022329
Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016). https://doi.org/10.1103/PhysRevLett.116.150504
Cao, H., Radhakrishnan, C., Su, M., Ali, M.M., Zhang, C., Huang, Y.F., Byrnes, T., Li, C.F., Guo, G.C.: Fragility of quantum correlations and coherence in a multipartite photonic system. Phys. Rev. A 102, 012403 (2020). https://doi.org/10.1103/PhysRevA.102.012403
Le Duc, V., Nowotarski, M., Kalaga, J.K.: The bipartite and tripartite entanglement in PT-symmetric system. Symmetry 13(2), 1 (2021). https://doi.org/10.3390/sym13020203
Wen, J., Zheng, C., Ye, Z., Xin, T., Long, G.: Stable states with nonzero entropy under broken \(\cal{PT} \) symmetry. Phys. Rev. Res. 3, 013256 (2021). https://doi.org/10.1103/PhysRevResearch.3.013256
Ding, Z., Liu, R., Radhakrishnan, C., Ma, W., Peng, X., Wang, Y., Byrnes, T., Shi, F., Du, J.: Experimental study of quantum coherence decomposition and trade-off relations in a tripartite system. NPJ Quant. Inf. 7(1), 145 (2021). https://doi.org/10.1038/s41534-021-00485-0
Zheng, C.: Duality quantum simulation of a general parity-time-symmetric two-level system. Europhys. Lett. 123(4), 40002 (2018). https://doi.org/10.1209/0295-5075/123/40002
Gui-Lu, L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45(5), 825 (2006). https://doi.org/10.1088/0253-6102/45/5/013
Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of NMR in One and Two Dimensions. Clarendon Press (1990)
Cory, D.G., Price, M.D., Havel, T.F.: Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Physica D: Nonlinear Phenomena 120(1), 82 (1998). https://doi.org/10.1016/S0167-2789(98)00046-3
Mitra, A., Sivapriya, K., Kumar, A.: Experimental implementation of a three qubit quantum game with corrupt source using nuclear magnetic resonance quantum information processor. J. Magn. Reson. 187(2), 306 (2007). https://doi.org/10.1016/j.jmr.2007.05.013
Uhlmann, A.: The transition probability in the state space of a \(*\)-algebra. Rep. Math. Phys. 9(2), 273 (1976). https://doi.org/10.1016/0034-4877(76)90060-4
Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Optics 41(12), 2315 (1994). https://doi.org/10.1080/09500349414552171
Gaikwad, A., Dorai, K.: True experimental reconstruction of quantum states and processes via convex optimization. Quant. Inf. Proc. 20(1), 19 (2021). https://doi.org/10.1007/s11128-020-02930-z
Leskowitz, G.M., Mueller, L.J.: State interrogation in nuclear magnetic resonance quantum-information processing. Phys. Rev. A 69, 052302 (2004). https://doi.org/10.1103/PhysRevA.69.052302
Wei, B.B.: Quantum work relations and response theory in parity-time-symmetric quantum systems. Phys. Rev. E 97, 012114 (2018). https://doi.org/10.1103/PhysRevE.97.012114
Deffner, S., Saxena, A.: Jarzynski equality in \(\cal{P} \cal{T} \)-symmetric quantum mechanics. Phys. Rev. Lett. 114, 150601 (2015). https://doi.org/10.1103/PhysRevLett.114.150601
Acknowledgements
All the experiments were performed on a Bruker Avance-III 600 MHz FT-NMR spectrometer at the NMR Research Facility of IISER Mohali. A. acknowledges financial support from DST/ICPS/QuST/Theme-1/2019/Q-68. K .D. acknowledges financial support from DST/ICPS/QuST/Theme-2/2019/Q-74.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gautam, A., Dorai, K. & Arvind Experimental demonstration of the dynamics of quantum coherence evolving under a PT-symmetric Hamiltonian on an NMR quantum processor. Quantum Inf Process 21, 329 (2022). https://doi.org/10.1007/s11128-022-03669-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03669-5