Abstract
Two three-party semi-quantum communication protocols (SQSDC protocol and SQD protocol) based on Greenberger–Horne–Zeilinger (GHZ) states are designed to make one quantum user and two classical ones to communicate. Three-party SQSDC protocol allows two classical senders to transmit their message to one quantum receiver simultaneously, while three-party SQD protocol is that the quantum party exchanges secret message with the classical ones. The security analysis manifests that two proposed protocols are resistant to several common individual eavesdropping attacks. Besides, compared with the existing SQSDC protocols, the proposed SQSDC protocol is more efficiency by adopting a new decoding operation based on the property of GHZ states. As for the proposed SQD protocol, it has the advantage of avoiding joint cheating between Alice and Bob with high efficiency of 40%. Furthermore, three-party QSDC and three-party SQD can be easily generalized into N-party SQSDC protocol and N-party SQD protocol suitable for new application scenarios, respectively.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in this published article.
References
Hermans, S.L.N., Pompili, M., Beukers, H.K.C., Baier, S., Borregaard, J., Hanson, R.: Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022)
Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018)
Liu, B., Xia, S., Xiao, Di., Huang, W., BingJie, Xu., Li, Y.: Decoy-state method for quantum-key-distribution- based quantum private query. Sci. China: Phys. Mech. Astron. 65(4), 240312 (2022)
Lv, S.X., Jiao, X.F., Zhou, P.: Multiparty quantum computation for summation and multiplication with mutually unbiased bases. Int. J. Theor. Phys. 58(9), 2872 (2019)
Zidan, M.: A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 34(35), 2050401 (2020)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 44305 (2005)
Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23(2), 290–292 (2006)
Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China: Phys. Mech. Astron. 53(7), 1271–1275 (2010)
Shi, J., Gong, Y.X., Ping, X., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56(5), 831–836 (2011)
Sun, Z.W., RuiGang, D., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)
ZhiHaoLiu, H.C., Liu, W.J., Juan, X., Wang, D., Li, Z.Q.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quant. Inf. Process. 12(1), 587–599 (2013)
Meslouhi, A., Hassouni, Y.: A quantum secure direct communication protocol using entangled modified spin coherent states. Quant. Inf. Process. 12(7), 2603–2621 (2013)
FangZhou, W., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China: Phys. Mech. Astron. 60(12), 120313 (2017)
Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China: Phys. Mech. Astron. 61(9), 90312 (2018)
Zheng, X.Y., Long, Y.X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quant. Inf. Process. 18(5), 129 (2019)
Yang, L., JiaWei, W., Lin, Z.S., Yin, L.G., Long, G.L.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China: Phys. Mech. Astron. 63(11), 110311 (2020)
Li, T., Long, G.L.: Quantum secure direct communication based on single-photon bell-state measurement. New J. Phys. 22(6), 063017 (2020)
Sun, Z., Song, L.Y., Huang, Q., Yin, L.G., Long, G.L., JianHua, L., Hanzo, L.: Toward practical quantum secure direct communication: a quantum-memory-free Protocol and code design. IEEE Trans. Commun. 68(9), 5778–5792 (2020)
Liu, X., Li, Z.J., Luo, D., Huang, C.F., Ma, D., Geng, M.M., Wang, J.W., Zhang, Z.R., Wei, K.J.: Practical decoy-state quantum secure direct communication. Sci. China: Phys. Mech. Astron. 64(12), 120311 (2021)
Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66(13), 1267–1269 (2021)
Sun, S.H., Long, G.L.: Deterministic secure quantum communication with practical devices. Quant. Eng. 3(4), e86 (2021)
Gao, C.Y., Guo, P.L., Ren, B.C.: Efficient quantum secure direct communication with complete Bell-state measurement. Quant. Eng. 3(4), e83 (2021)
Wang, C.: Quantum secure direct communication: intersection of communication and cryptography. Fundam. Res. 1(1), 91–92 (2021)
Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)
Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)
Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China: Phys. Mech. Astron. 63(3), 230362 (2020)
Zou, Z.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. Europhys. Lett. 131(4), 40005 (2020)
Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)
Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China: Phys. Mech. Astron. 65(5), 250311 (2022)
JianYong, H., Bo, Y., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)
Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)
Pan, D., Lin, Z.S., JiaWei, W., Yin, L.G., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8(9), 1522–1531 (2020)
Qi, Z.T., Li, Y.H., Huang, Y.W., Feng, J., Zheng, Y.L., Chen, X.F.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)
Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)
Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)
Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China: Phys. Mech. Astron. 57(9), 1696–1702 (2014)
Luo, Y.P., Hwang, T.L.: Authenticated semi-quantum direct communication protocols using Bell states. Quant. Inf. Process. 15(2), 947–958 (2016)
Zhang, M.H., Li, H.F., Xia, Z.Q., Feng, X.Y., Peng, J.Y.: Semiquantum secure direct communication using EPR pairs. Quant. Inf. Process. 16(5), 117 (2017)
Yang, C.W., Tsai, C.W.: Intercept-and-resend attack and improvement of semiquantum secure direct communication using EPR pairs. Quant. Inf. Process. 18(10), 306 (2019)
Yan, L.L., Sun, Y.H., Chang, Y., Zhang, S.B., Wan, G.G., Sheng, Z.W.: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quant. Inf. Process. 17(11), 315 (2018)
ChenXie, L.L., Situ, H.Z., He, J.H.: Semi-quantum secure direct communication scheme based on Bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)
Tao, Z., Chang, Y., Zhang, S.B., Dai, J.Q., Li, X.Y.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58(9), 2986–2993 (2019)
Sun, Y.H., Yan, L.L., Chang, Y., Zhang, S.B., Shao, T.T., Zhang, Y.: Two semi-quantum communication protocols based on Bell states. Mod. Phys. Lett. A 34, 1950004 (2019)
Rong, Z.B., Qiu, D.W., Zou, X.F.: Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 59(6), 1807–1819 (2020)
Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quant. Inf. Process. 16(12), 295 (2017)
Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)
Pan, H.M.: Semi-quantum dialogue with Bell entangled states. Int. J. Theor. Phys. 59(5), 1364–1371 (2020)
RiGuiZhou, X.Z.: Controlled deterministic secure semi-quantum communication. Int. J. Theor. Phys. 60(5), 1767–1782 (2021)
Rong, Z.B., Qiu, D.W., Mateus, P., Zou, X.F.: Mediated semi-quantum secure direct communication. Quant. Inf. Process. 20(2), 58 (2021)
LiangChao, X., Chen, H.Y., Zhou, N.R., Gong, L.H.: Multi-party semi-quantum secure direct communication protocol with cluster states. Int. J. Theor. Phys. 59(7), 2175–2186 (2020)
Zhou, R.G., Zhang, X.X., Li, F.X.: Three-party semi-quantum protocol for deterministic secure quantum dialogue based on GHZ states. Quant. Inf. Process. 20(4), 153 (2021)
Chen, X.B., Wang, Y.L., Gang, X., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634–13642 (2019)
Jun, G., Lin, P.H., Hwang, T.L.: Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol.’ Quant. Inf. Process. 17(7), 182 (2018)
Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Rev. A 351(1–2), 23–25 (2006)
Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)
Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quant. Inf. Process. 12(6), 2191–2205 (2013)
Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)
Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 61871205).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, YF., Duan, LZ., Qiu, TR. et al. Multi-party semi-quantum secure direct communication using Greenberger–Horne–Zeilinger states. Quantum Inf Process 21, 324 (2022). https://doi.org/10.1007/s11128-022-03671-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03671-x