Skip to main content

Advertisement

Log in

Quantum-assisted blockchain for IoT based on quantum signature

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Internet of things (IoT) is a heterogeneous network, and devices produced by different manufacturers lack trust and coordination mechanisms, so they are vulnerable to attacks. Blockchain can provide credible communication at a low cost for IoT nodes. However, the classic digital signature algorithms commonly used in blockchain are no longer secure enough against quantum computing attacks. Given that the emergence of universal quantum computers is just around the corner, we propose a quantum-assisted blockchain of things (QBoT) based on quantum signature. This scheme can protect IoT systems from computation-based attacks and provide more secure communication assurance between nodes. Finally, we analyze the possible attacks on the IoT, and the results show that our proposed scheme can guarantee the security of common IoT attacks. Furthermore, compared with previous quantum-assisted blockchain schemes, QBoT is more efficient and scalable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Lade, P., Ghosh, R., Srinivasan, S.: Manufacturing analytics and industrial internet of things. IEEE Intell. Syst. 32(3), 74–79 (2017)

    Article  Google Scholar 

  2. Dai, H.-N., Zheng, Z., Zhang, Y.: Blockchain for internet of things: a survey. IEEE Internet Things J. 6(5), 8076–8094 (2019)

    Article  Google Scholar 

  3. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/bitcoin.pdf (2008)

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  6. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  ADS  Google Scholar 

  7. Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  ADS  Google Scholar 

  8. Chen, J., Gan, W., Hu, M., Chen, C.-M.: On the construction of a post-quantum blockchain. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8 (2021). IEEE

  9. Yin, W., Wen, Q., Li, W., Zhang, H., Jin, Z.: An anti-quantum transaction authentication approach in blockchain. IEEE Access 6, 5393–5401 (2018)

    Article  Google Scholar 

  10. Torres, W.A.A., Steinfeld, R., Sakzad, A., Liu, J.K., Kuchta, V., Bhattacharjee, N., Au, M.H., Cheng, J.: Post-quantum one-time linkable ring signature and application to ring confidential transactions in blockchain (lattice ringct v1. 0). In: Australasian Conference on Information Security and Privacy, pp. 558–576 (2018). Springer

  11. Chalkias, K., Brown, J., Hearn, M., Lillehagen, T., Nitto, I., Schroeter, T.: Blockchained post-quantum signatures. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1196–1203 (2018). IEEE

  12. Kiktenko, E.O., Pozhar, N.O., Anufriev, M.N., Trushechkin, A.S., Yunusov, R.R., Kurochkin, Y. V, Lvovsky, A. I, Fedorov, A.K.: Quantum-secured blockchain. QUANTUM SCIENCE AND TECHNOLOGY 3(3) (2018). https://doi.org/10.1088/2058-9565/aabc6

  13. Gao, Y.-L., Chen, X.-B., Xu, G., Yuan, K.-G., Liu, W., Yang, Y.-X.: A novel quantum blockchain scheme base on quantum entanglement and dpos. Quantum Inf. Process. 19(12), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  14. Singh, S., Rajput, N.K., Rathi, V.K., Pandey, H.M., Jaiswal, A.K., Tiwari, P.: Securing blockchain transactions using quantum teleportation and quantum digital signature. Neural Process. Lett., 1–16 (2020)

  15. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  16. Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77(3), 032348 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9(10), 641–652 (2015)

    Article  ADS  Google Scholar 

  18. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. American Association of Physics Teachers (2002)

  19. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  20. Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)

    Article  ADS  Google Scholar 

  21. Braunstein, S.L., Mann, A.: Measurement of the bell operator and quantum teleportation. Phys. Rev. A 51(3), 1727 (1995)

    Article  ADS  Google Scholar 

  22. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025. Theoretical Aspects of Quantum Cryptography - celebrating 30 years of BB84

  23. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  24. Sengupta, J., Ruj, S., Bit, S.D.: A comprehensive survey on attacks, security issues and blockchain solutions for iot and iiot. J. Netw. Comput. Appl. 149, 102481 (2020)

    Article  Google Scholar 

  25. Varga, P., Plosz, S., Soos, G., Hegedus, C.: Security threats and issues in automation iot. In: 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), pp. 1–6 (2017). IEEE

  26. Andrea, I., Chrysostomou, C., Hadjichristofi, G.: Internet of things: Security vulnerabilities and challenges. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 180–187 (2015). IEEE

  27. Chen, F.-L., Liu, W.-F., Chen, S.-G., Wang, Z.-H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(1), 1–14 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Shi, W.-M., Wang, Y.-M., Zhou, Y.-H., Yang, Y.-G., Zhang, J.-B.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik 164, 753–759 (2018)

    Article  ADS  Google Scholar 

  29. Xin, X., Ding, L., Li, C., Sang, Y., Yang, Q., Li, F.: Quantum public-key designated verifier signature. Quantum Inf. Process. 21(1), 1–16 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is funded by Heilongjiang Touyan Innovation Team Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Zhou, Z. & Li, Y. Quantum-assisted blockchain for IoT based on quantum signature. Quantum Inf Process 21, 327 (2022). https://doi.org/10.1007/s11128-022-03676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03676-6

Keywords