Abstract
The Internet of things (IoT) is a heterogeneous network, and devices produced by different manufacturers lack trust and coordination mechanisms, so they are vulnerable to attacks. Blockchain can provide credible communication at a low cost for IoT nodes. However, the classic digital signature algorithms commonly used in blockchain are no longer secure enough against quantum computing attacks. Given that the emergence of universal quantum computers is just around the corner, we propose a quantum-assisted blockchain of things (QBoT) based on quantum signature. This scheme can protect IoT systems from computation-based attacks and provide more secure communication assurance between nodes. Finally, we analyze the possible attacks on the IoT, and the results show that our proposed scheme can guarantee the security of common IoT attacks. Furthermore, compared with previous quantum-assisted blockchain schemes, QBoT is more efficient and scalable.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statement
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Lade, P., Ghosh, R., Srinivasan, S.: Manufacturing analytics and industrial internet of things. IEEE Intell. Syst. 32(3), 74–79 (2017)
Dai, H.-N., Zheng, Z., Zhang, Y.: Blockchain for internet of things: a survey. IEEE Internet Things J. 6(5), 8076–8094 (2019)
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/bitcoin.pdf (2008)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)
Chen, J., Gan, W., Hu, M., Chen, C.-M.: On the construction of a post-quantum blockchain. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8 (2021). IEEE
Yin, W., Wen, Q., Li, W., Zhang, H., Jin, Z.: An anti-quantum transaction authentication approach in blockchain. IEEE Access 6, 5393–5401 (2018)
Torres, W.A.A., Steinfeld, R., Sakzad, A., Liu, J.K., Kuchta, V., Bhattacharjee, N., Au, M.H., Cheng, J.: Post-quantum one-time linkable ring signature and application to ring confidential transactions in blockchain (lattice ringct v1. 0). In: Australasian Conference on Information Security and Privacy, pp. 558–576 (2018). Springer
Chalkias, K., Brown, J., Hearn, M., Lillehagen, T., Nitto, I., Schroeter, T.: Blockchained post-quantum signatures. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1196–1203 (2018). IEEE
Kiktenko, E.O., Pozhar, N.O., Anufriev, M.N., Trushechkin, A.S., Yunusov, R.R., Kurochkin, Y. V, Lvovsky, A. I, Fedorov, A.K.: Quantum-secured blockchain. QUANTUM SCIENCE AND TECHNOLOGY 3(3) (2018). https://doi.org/10.1088/2058-9565/aabc6
Gao, Y.-L., Chen, X.-B., Xu, G., Yuan, K.-G., Liu, W., Yang, Y.-X.: A novel quantum blockchain scheme base on quantum entanglement and dpos. Quantum Inf. Process. 19(12), 1–15 (2020)
Singh, S., Rajput, N.K., Rathi, V.K., Pandey, H.M., Jaiswal, A.K., Tiwari, P.: Securing blockchain transactions using quantum teleportation and quantum digital signature. Neural Process. Lett., 1–16 (2020)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)
Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77(3), 032348 (2008)
Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9(10), 641–652 (2015)
Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. American Association of Physics Teachers (2002)
Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)
Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)
Braunstein, S.L., Mann, A.: Measurement of the bell operator and quantum teleportation. Phys. Rev. A 51(3), 1727 (1995)
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025. Theoretical Aspects of Quantum Cryptography - celebrating 30 years of BB84
Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)
Sengupta, J., Ruj, S., Bit, S.D.: A comprehensive survey on attacks, security issues and blockchain solutions for iot and iiot. J. Netw. Comput. Appl. 149, 102481 (2020)
Varga, P., Plosz, S., Soos, G., Hegedus, C.: Security threats and issues in automation iot. In: 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), pp. 1–6 (2017). IEEE
Andrea, I., Chrysostomou, C., Hadjichristofi, G.: Internet of things: Security vulnerabilities and challenges. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 180–187 (2015). IEEE
Chen, F.-L., Liu, W.-F., Chen, S.-G., Wang, Z.-H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(1), 1–14 (2018)
Shi, W.-M., Wang, Y.-M., Zhou, Y.-H., Yang, Y.-G., Zhang, J.-B.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik 164, 753–759 (2018)
Xin, X., Ding, L., Li, C., Sang, Y., Yang, Q., Li, F.: Quantum public-key designated verifier signature. Quantum Inf. Process. 21(1), 1–16 (2022)
Acknowledgements
This paper is funded by Heilongjiang Touyan Innovation Team Program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ye, F., Zhou, Z. & Li, Y. Quantum-assisted blockchain for IoT based on quantum signature. Quantum Inf Process 21, 327 (2022). https://doi.org/10.1007/s11128-022-03676-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03676-6