Skip to main content
Log in

Asymmetric quantum codes with high code rates

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Asymmetric quantum error-correcting codes (AQECCs) with high code rates and large distances play a crucial role in protecting quantum information from noise and decoherence. Our contributions of this paper are twofold. One is the construction of new AQECCs by repeated-root cyclic codes and proposing some AQECCs with higher code rates or asymmetries than those in the literature that match or exceed the asymmetric quantum Gilbert–Varshamov bound. The other is the construction of five classes of MDS AQECCs attaining the asymmetric quantum Singleton bound, which have higher code rates than most of the ones obtained in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and material

The manuscript has no associated data.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(1), 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  2. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995). https://doi.org/10.1103/physreva.52.r2493

    Article  ADS  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996). https://doi.org/10.1103/PhysRevA.54.1098

    Article  ADS  Google Scholar 

  4. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996). https://doi.org/10.1103/physrevlett.77.793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452(1954), 2551–2577 (1996). https://doi.org/10.1098/rspa.1996.0136

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741–4751 (1996). https://doi.org/10.1103/physreva.54.4741

    Article  ADS  MathSciNet  Google Scholar 

  7. Abobeih, M.H., Cramer, J., Bakker, M.A., Kalb, N., Markham, M., Twitchen, D.J., Taminiau, T.H.: One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018). https://doi.org/10.1038/s41467-018-04916-z

    Article  ADS  Google Scholar 

  8. Gyenis, A., Mundada, P.S., Paolo, A.D., Hazard, T.M., You, X., Schuster, D.I., Koch, J., Blais, A., Houck, A.A.: Experimental realization of a protected superconducting circuit derived from the \(0 \sim \pi \) qubit. PRX Quantum 2(1), 010339 (2021). https://doi.org/10.1103/prxquantum.2.010339

    Article  Google Scholar 

  9. Zhou, X., Koolstra, G., Zhang, X., Yang, G., Han, X., Dizdar, B., Li, X., Divan, R., Guo, W., Murch, K.W., Schuster, D.I., Jin, D.: Single electrons on solid neon as a solid-state qubit platform. Nature 605(7908), 46–50 (2022). https://doi.org/10.1038/s41586-022-04539-x

    Article  ADS  Google Scholar 

  10. Ioffe, L., Mézard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75(3), 032345 (2007). https://doi.org/10.1103/physreva.75.032345

    Article  ADS  MathSciNet  Google Scholar 

  11. Aly, S.A.: Asymmetric quantum BCH codes. In: Proceedings International Conference on Computer Engineering & Systems, pp. 157–162 (2008). https://doi.org/10.1109/ICCES.2008.4772987

  12. Sarvepalli, P.K., Klappenecker, A., Rotteler, M.: Asymmetric quantum LDPC codes. In: Proceedings IEEE International Symposium on Information Theory, pp. 305–309 (2008). https://doi.org/10.1109/ISIT.2008.4594997

  13. Sarvepalli, P.K., Klappenecker, A., Rötteler, M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. R. Soc. A 465(2105), 1645–1672 (2009). https://doi.org/10.1098/rspa.2008.0439

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Leng, R., Ma, Z.: Constructions of new families of nonbinary asymmetric quantum BCH codes and subsystem BCH codes. Sci. China Phys. Mech. Astron. 55(3), 465–469 (2012). https://doi.org/10.1007/s11433-012-4655-3

    Article  ADS  Google Scholar 

  15. Li, R., Xu, G., Guo, L.: On two problems of asymmetric quantum codes. Int. J. Mod. Phys. B 28(06), 1450017 (2014). https://doi.org/10.1142/s0217979214500179

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Guardia, G.G.L.: On the construction of asymmetric quantum codes. Int. J. Theor. Phys. (2014). https://doi.org/10.1007/s10773-014-2031-y

  17. Ma, Y., Feng, X., Lv, L., Li, J.: Dual containing BCH codes and new asymmetric quantum codes. In: Proceedings Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), pp. 1575–1578 (2015). https://doi.org/10.1109/IMCCC.2015.334

  18. Ma, Y., Feng, X., Xu, G.: New asymmetric quantum codes over \({\mathbb{F} }_q\). Quantum Inf. Process. 15(7), 2759–2769 (2016). https://doi.org/10.1007/s11128-016-1320-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, L., Feng, K., Ling, S., Xing, C.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inf. Theory 56(6), 2938–2945 (2010). https://doi.org/10.1109/tit.2010.2046221

    Article  MathSciNet  MATH  Google Scholar 

  20. Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of Castle type. Quantum Inf. Process. 15(10), 4071–4088 (2016). https://doi.org/10.1007/s11128-016-1378-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Guardia, G.G.L., Pereira, F.R.F.: Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Inf. Process. (2017). https://doi.org/10.1007/s11128-017-1618-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Guardia, G.G.L.: Asymmetric quantum Reed–Solomon and generalized Reed–Solomon codes. Quantum Inf. Process. 11(2), 591–604 (2011). https://doi.org/10.1007/s11128-011-0269-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Shi, X., Yue, Q., Wu, Y.: New quantum MDS codes with large minimum distance and short length from generalized Reed-Solomon codes. Discrete Math. 342(7), 1989–2001 (2019). https://doi.org/10.1016/j.disc.2019.03.019

    Article  MathSciNet  MATH  Google Scholar 

  24. Tian, F., Zhu, S.: Some new quantum MDS codes from generalized Reed–Solomon codes. Discrete Math. 342(12), 111593 (2019). https://doi.org/10.1016/j.disc.2019.07.009

    Article  MathSciNet  MATH  Google Scholar 

  25. Qian, J., Zhang, L.: New optimal asymmetric quantum codes. Mod. Phys. Lett. B 27(02), 1350010 (2012). https://doi.org/10.1142/s0217984913500103

    Article  ADS  MathSciNet  Google Scholar 

  26. Chen, J.-Z., Li, J.-P., Lin, J.: New optimal asymmetric quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 53(1), 72–79 (2013). https://doi.org/10.1007/s10773-013-1784-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, Y., Chen, J., Feng, C., Chen, R.: Some families of asymmetric quantum MDS codes constructed from constacyclic codes. Int. J. Theor. Phys. 57(2), 453–464 (2017). https://doi.org/10.1007/s10773-017-3578-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, X., Zhu, S., Kai, X.: Two classes of new optimal asymmetric quantum codes. Int. J. Theor. Phys. 57(6), 1829–1838 (2018). https://doi.org/10.1007/s10773-018-3708-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, J., Huang, Y., Feng, C., Chen, R.: Some families of optimal quantum codes derived from constacyclic codes. Linear Multilinear Algebra 67(4), 725–742 (2018). https://doi.org/10.1080/03081087.2018.1432544

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, J., Chen, Y., Huang, Y., Feng, C.: New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes. Quantum Inf. Process. 18(2), 40 (2019). https://doi.org/10.1007/s11128-018-2156-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Matsumoto, R.: Two Gilbert–Varshamov-type existential bounds for asymmetric quantum error-correcting codes. Quantum Inf. Process. 16(12), 285 (2017). https://doi.org/10.1007/s11128-017-1748-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Christensen, R.B., Geil, O.: On Steane-enlargement of quantum codes from Cartesian product point sets. Quantum Inf. Process. 19(7), 192 (2020). https://doi.org/10.1007/s11128-020-02691-9

    Article  ADS  MathSciNet  Google Scholar 

  33. Lv, J., Li, R., Yao, Y.: Quasi-cyclic constructions of asymmetric quantum error-correcting codes. Cryptogr. Commun. 13(5), 661–680 (2021). https://doi.org/10.1007/s12095-021-00489-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511807077

    Book  MATH  Google Scholar 

  35. LaGuardia, G.G.: Quantum Error Correction. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-48551-1

    Book  Google Scholar 

  36. Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl. 14(1), 22–40 (2008). https://doi.org/10.1016/j.ffa.2007.07.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37(2), 337–342 (1991). https://doi.org/10.1109/18.75249

    Article  MathSciNet  MATH  Google Scholar 

  38. van Lint, J.H.: Repeated-root cyclic codes. IEEE Trans. Inf. Theory 37(2), 343–345 (1991). https://doi.org/10.1109/18.75250

    Article  MathSciNet  MATH  Google Scholar 

  39. Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19(1), 101–110 (1973). https://doi.org/10.1109/tit.1973.1054936

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixian Li.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Li, W. & Zhao, W. Asymmetric quantum codes with high code rates. Quantum Inf Process 21, 346 (2022). https://doi.org/10.1007/s11128-022-03680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03680-w

Keywords