Abstract
Let \(R_{s-1}={\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q\) be a finite non-chain ring, where q is an odd prime power, \(v_i^2=v_i, v_iv_j=v_jv_i=0\) for \(1\le i,j\le s-1\). In this paper, a class of maximal entanglement (ME) entanglement-assisted quantum error-correcting codes (EAQECCs) are obtained from Gray images of cyclic codes over \(R_{s-1}\). By a special Gray map, a class of maximal entanglement and maximum distance separable EAQECCs (ME-MDS EAQECCs) are constructed from Gray images of \((1-2v_1)\)-constacyclic codes over \(R_1={\mathbb {F}}_q+v_1{\mathbb {F}}_q\), where \(v_1^2=v_1\). Furthermore, some new ME EAQECCs are tabulated by comparing with some known EAQECCs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The datasets generated during the current study are not publicly available due to the computational algorithm for searching good entanglement-assisted quantum error-correcting codes but are available from the corresponding author on reasonable request.
References
Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)
Brun, T.A., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)
Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16, 303 (2017)
Chen, B., Ling, S., Zhang, Z.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2020)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 53, 1098–1105 (1996)
Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17(10), 273 (2018)
Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Tansuchat, R.: A class of skew cyclic codes and application in quantum codes construction. Discrete Math. 334(2), 112189 (2021)
Diao, L., Gao, J., Lu, J.: Some results on \({\mathbb{Z} }_p{\mathbb{Z} }_p[v]\)-additive cyclic codes. Adv. Math. Commun. 14, 557–572 (2020)
Dinh, H.Q., Le, H.T., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \({\mathbb{F} }_{p^m}\). Quantum Inf. Process. 20, 373 (2021)
Fang, W., Fu, F.W., Li, L., Zhu, S.: Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inform. Theory. 66(6), 3527–3537 (2020)
Grassl, M.: Entanglement-Assisted Quantum Communication Beating the Quantum Singleton Bound. AQIS, Taiwan (2016)
Gao, Y., Gao, J., Fu, F.W.: Quantum codes from cyclic codes over the ring \({\mathbb{F} }_q+v_1{\mathbb{F} }_q+\cdots +v_r{\mathbb{F} }_q\). Appl. Algebra Eng. Commun. Comput. 30, 161–174 (2019)
Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18, 116 (2019)
Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)
Gao, J., Wang, Y.: \(u\)-Constacyclic codes over \({\mathbb{F} }_p+u{\mathbb{F} }_p\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17, 4 (2018)
Gao, J., Wang, Y.: Quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 57, 682–686 (2018)
Hsieh, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)
Hou, X., Gao, J.: \(n\)-Dimension quasi-twisted codes of arbitrary length over finite fields. J. Appl. Math. Comput. 68, 535–552 (2022)
Hou, X., Gao, J.: \({\mathbb{Z} }_p{\mathbb{Z} }_p[v]\)-additive cyclic codes are asymptotically good. J. Appl. Math. Comput. 66, 871–884 (2021)
Hu, P., Liu, X.: Three classes of new EAQEC MDS codes. Quantum Inf. Process. 20, 103 (2021)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Jin, R., Xie, D., Luo, J.: New classes of entanglement-assisted quantum MDS codes. Quantum Inf. Process. 19, 289 (2020)
Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 44 (2019)
Lai, C.Y., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators. IEEE Trans. Inf. Theory 64, 622–639 (2018)
Lai, C.Y., Brun, T.A.: Entanglement-assisted quantum error correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012)
Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)
Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18, 89 (2019)
Liu, H., Liu, X.: New EAQEC codes from cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q\). Quantum Inf. Process. 19, 85 (2020)
Liu, X., Liu, H., Yu, L.: New EAQEC codes constructed from Galois LCD codes. Quantum Inf. Process. 19, 20 (2020)
Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)
Lv, J., Li, R., Yao, Y.: Extended quasi-cyclic constructions of quantum codes and entanglement-assisted quantum codes. Comput. Math. Appl. 40, 283 (2021)
Lu, L., Ma, W., Guo, L.: Two families of entanglement-assisted quantum MDS codes from constacyclic codes. Int. J. Theor. Phys. 59, 1657–1667 (2020)
Lu, L., Ma, W., Li, R., Cao, H., Ren, J.: Two families of entanglement-assisted quantum MDS codes from cyclic codes. Int. J. Theor. Phys. 60, 1833–1842 (2021)
Li, L., Zhu, S., Liu, L., Kai, X.: Entanglement-assisted quantum MDS codes from generalized ReedSolomon codes. Quantum Inf. Process. 18, 153 (2019)
Meng, X., Gao, J.: Complete weight enumerator of torsion codes. Adv. Math. Commun. 16, 571–596 (2022)
Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18, 71 (2019)
Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86, 1565–1572 (2018)
Sar, M., Koroglu, M.E.: New entanglement-assisted quantum MDS codes with maximal entanglement. Int. J. Theor. Phys. 60, 243–253 (2021)
Sahinkaya, S., Korban, A., Ustun, D.: Maximal entanglement-assisted quantum error correction codes from the skew group ring \({\mathbb{F} }_4\rtimes _\varphi G\) by a heuristic search scheme. Quantum Inf. Process. 21, 156 (2022)
Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995)
Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2007)
Wilde, M.M., Hsieh, M.H., Babar, Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60, 1203–1222 (2014)
Wang, J., Li, R., Lv, J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and negacyclic codes. Quantum Inf. Process. 19, 138 (2020)
Wang, J., Li, R., Lv, J., Guo, G., Liu, Y.: Entanglement-assisted quantum error correction codes with length \(n=q^2+1\). Quantum Inf. Process. 18, 292 (2019)
Wang, L., Zhu, S., Sun, Z.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19, 65 (2020)
Xu, H.Q., Du, W.: Constructions of symplectic LCD MDS codes. Bull. Malays. Math. Sci. Soc. 44, 3377–3390 (2021)
Xu, H.Q., Du, W.: Hermitian LCD codes over \({\mathbb{F} }_{q^2}+u{\mathbb{F} }_{q^2}\) and their applications to maximal entanglement EAQECCs. Cryptogr. Commun. 44, 3377–3390 (2021)
Yao, Y., Ma, Y., Lv, J.: Quantum codes and entanglement-assisted quantum codes derived from one-generator quasi-twisted codes. Int. J. Theor. Phys. 60, 1077–1089 (2021)
Zhu, S., Jiang, W., Chen, X.: New entanglement-assisted quantum MDS codes with length \(n=\frac{q^2+1}{5}\). Quantum Inf. Process. 19, 211 (2020)
Acknowledgements
This research is supported by the National Natural Science Foundation of China (Nos. 12071264, 11701336, 11626144, 11671235), the Shandong Provincial Natural Science Foundation under Grant (No. ZR2021QA047) and IC Program of Shandong Institutions of Higher Learning For Youth Innovative Talents.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Y., Liu, Y., Hou, X. et al. Maximal entanglement EAQECCs from cyclic and constacyclic codes over \({\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q\). Quantum Inf Process 21, 333 (2022). https://doi.org/10.1007/s11128-022-03685-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03685-5