Skip to main content

Advertisement

Log in

Maximal entanglement EAQECCs from cyclic and constacyclic codes over \({\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q\)

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Let \(R_{s-1}={\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q\) be a finite non-chain ring, where q is an odd prime power, \(v_i^2=v_i, v_iv_j=v_jv_i=0\) for \(1\le i,j\le s-1\). In this paper, a class of maximal entanglement (ME) entanglement-assisted quantum error-correcting codes (EAQECCs) are obtained from Gray images of cyclic codes over \(R_{s-1}\). By a special Gray map, a class of maximal entanglement and maximum distance separable EAQECCs (ME-MDS EAQECCs) are constructed from Gray images of \((1-2v_1)\)-constacyclic codes over \(R_1={\mathbb {F}}_q+v_1{\mathbb {F}}_q\), where \(v_1^2=v_1\). Furthermore, some new ME EAQECCs are tabulated by comparing with some known EAQECCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The datasets generated during the current study are not publicly available due to the computational algorithm for searching good entanglement-assisted quantum error-correcting codes but are available from the corresponding author on reasonable request.

References

  1. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brun, T.A., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16, 303 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chen, B., Ling, S., Zhang, Z.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 53, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  6. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17(10), 273 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Tansuchat, R.: A class of skew cyclic codes and application in quantum codes construction. Discrete Math. 334(2), 112189 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diao, L., Gao, J., Lu, J.: Some results on \({\mathbb{Z} }_p{\mathbb{Z} }_p[v]\)-additive cyclic codes. Adv. Math. Commun. 14, 557–572 (2020)

    Google Scholar 

  9. Dinh, H.Q., Le, H.T., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \({\mathbb{F} }_{p^m}\). Quantum Inf. Process. 20, 373 (2021)

    Article  ADS  Google Scholar 

  10. Fang, W., Fu, F.W., Li, L., Zhu, S.: Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inform. Theory. 66(6), 3527–3537 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grassl, M.: Entanglement-Assisted Quantum Communication Beating the Quantum Singleton Bound. AQIS, Taiwan (2016)

    Google Scholar 

  12. Gao, Y., Gao, J., Fu, F.W.: Quantum codes from cyclic codes over the ring \({\mathbb{F} }_q+v_1{\mathbb{F} }_q+\cdots +v_r{\mathbb{F} }_q\). Appl. Algebra Eng. Commun. Comput. 30, 161–174 (2019)

    Article  Google Scholar 

  13. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18, 116 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, J., Wang, Y.: \(u\)-Constacyclic codes over \({\mathbb{F} }_p+u{\mathbb{F} }_p\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17, 4 (2018)

    Article  ADS  Google Scholar 

  16. Gao, J., Wang, Y.: Quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 57, 682–686 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsieh, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)

    Article  ADS  Google Scholar 

  18. Hou, X., Gao, J.: \(n\)-Dimension quasi-twisted codes of arbitrary length over finite fields. J. Appl. Math. Comput. 68, 535–552 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hou, X., Gao, J.: \({\mathbb{Z} }_p{\mathbb{Z} }_p[v]\)-additive cyclic codes are asymptotically good. J. Appl. Math. Comput. 66, 871–884 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, P., Liu, X.: Three classes of new EAQEC MDS codes. Quantum Inf. Process. 20, 103 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  22. Jin, R., Xie, D., Luo, J.: New classes of entanglement-assisted quantum MDS codes. Quantum Inf. Process. 19, 289 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 44 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lai, C.Y., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators. IEEE Trans. Inf. Theory 64, 622–639 (2018)

    Article  MATH  Google Scholar 

  25. Lai, C.Y., Brun, T.A.: Entanglement-assisted quantum error correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012)

    Article  ADS  Google Scholar 

  26. Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)

    Article  ADS  Google Scholar 

  27. Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18, 89 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Liu, H., Liu, X.: New EAQEC codes from cyclic codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q\). Quantum Inf. Process. 19, 85 (2020)

    Article  ADS  Google Scholar 

  29. Liu, X., Liu, H., Yu, L.: New EAQEC codes constructed from Galois LCD codes. Quantum Inf. Process. 19, 20 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lv, J., Li, R., Yao, Y.: Extended quasi-cyclic constructions of quantum codes and entanglement-assisted quantum codes. Comput. Math. Appl. 40, 283 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, L., Ma, W., Guo, L.: Two families of entanglement-assisted quantum MDS codes from constacyclic codes. Int. J. Theor. Phys. 59, 1657–1667 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, L., Ma, W., Li, R., Cao, H., Ren, J.: Two families of entanglement-assisted quantum MDS codes from cyclic codes. Int. J. Theor. Phys. 60, 1833–1842 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, L., Zhu, S., Liu, L., Kai, X.: Entanglement-assisted quantum MDS codes from generalized ReedSolomon codes. Quantum Inf. Process. 18, 153 (2019)

    Article  ADS  Google Scholar 

  35. Meng, X., Gao, J.: Complete weight enumerator of torsion codes. Adv. Math. Commun. 16, 571–596 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18, 71 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86, 1565–1572 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sar, M., Koroglu, M.E.: New entanglement-assisted quantum MDS codes with maximal entanglement. Int. J. Theor. Phys. 60, 243–253 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sahinkaya, S., Korban, A., Ustun, D.: Maximal entanglement-assisted quantum error correction codes from the skew group ring \({\mathbb{F} }_4\rtimes _\varphi G\) by a heuristic search scheme. Quantum Inf. Process. 21, 156 (2022)

    Article  ADS  Google Scholar 

  40. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  41. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2007)

    Article  ADS  Google Scholar 

  42. Wilde, M.M., Hsieh, M.H., Babar, Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60, 1203–1222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, J., Li, R., Lv, J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and negacyclic codes. Quantum Inf. Process. 19, 138 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. Wang, J., Li, R., Lv, J., Guo, G., Liu, Y.: Entanglement-assisted quantum error correction codes with length \(n=q^2+1\). Quantum Inf. Process. 18, 292 (2019)

    Article  ADS  Google Scholar 

  45. Wang, L., Zhu, S., Sun, Z.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19, 65 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. Xu, H.Q., Du, W.: Constructions of symplectic LCD MDS codes. Bull. Malays. Math. Sci. Soc. 44, 3377–3390 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, H.Q., Du, W.: Hermitian LCD codes over \({\mathbb{F} }_{q^2}+u{\mathbb{F} }_{q^2}\) and their applications to maximal entanglement EAQECCs. Cryptogr. Commun. 44, 3377–3390 (2021)

    Google Scholar 

  48. Yao, Y., Ma, Y., Lv, J.: Quantum codes and entanglement-assisted quantum codes derived from one-generator quasi-twisted codes. Int. J. Theor. Phys. 60, 1077–1089 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhu, S., Jiang, W., Chen, X.: New entanglement-assisted quantum MDS codes with length \(n=\frac{q^2+1}{5}\). Quantum Inf. Process. 19, 211 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 12071264, 11701336, 11626144, 11671235), the Shandong Provincial Natural Science Foundation under Grant (No. ZR2021QA047) and IC Program of Shandong Institutions of Higher Learning For Youth Innovative Talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y., Hou, X. et al. Maximal entanglement EAQECCs from cyclic and constacyclic codes over \({\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q\). Quantum Inf Process 21, 333 (2022). https://doi.org/10.1007/s11128-022-03685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03685-5

Keywords

Mathematics Subject Classification