Skip to main content
Log in

Detection of polarization shift-keyed/switched/multiplexed quantum coherent states in M-ary photonic communication systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we present the analysis of the quantum detection of information-carrying coherent states used in optical communications systems that employ the degrees of freedom of both the complex amplitude and the state of polarization of the laser field. In these quantum communication systems, the transmitter prepares a set of quantum states (a constellation of quantum composite coherent states) producing a four-dimensional (4D) M-ary modulation, that is sent through the optical channel, in diverse formats such as: a) polarization shift-keying (PolSK), b) polarization switching (PS), or c) polarization multiplexing (PM). At the receiver, measurements are performed to determine as accurately as possible which state was sent, with a discrimination method aided by any prior information. With this purpose, in this work we apply the square root method (SRM) for the received composite quantum state constellations and study their performance in error probability and mutual information for several 4D M-ary coherent state modulation formats, inspired by constellations commonly used in classical photonic communications. We arrive at closed form expressions both for the error probability and for the mutual information, for most of the modulation formats analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chefles, A.: 12 Quantum states discrimination and classical information transmission a review of experimental progress. In: Paris, M., Řeháček, J. (eds.) Quantum State Estimation Lecture Notes in Physics, vol. 649. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-44481-7_12

    Chapter  MATH  Google Scholar 

  2. Wilde, M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343

    Book  MATH  Google Scholar 

  3. Schumacher, B., Westmoreland, M.: Quantum Processes Systems, and Information. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511814006

    Book  MATH  Google Scholar 

  4. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  5. Yuen, H., Kennedy, R., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21(2), 125–134 (1975). https://doi.org/10.1109/TIT.1975.1055351

    Article  MathSciNet  MATH  Google Scholar 

  6. Ban, M., Kurokawa, K., Momose, R., et al.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36, 1269–1288 (1997). https://doi.org/10.1007/BF02435921

    Article  MathSciNet  MATH  Google Scholar 

  7. Fanizza, M., Rosati, M., Skotiniotis, M., Calsamiglia, J., Giovannetti, V.: Squeezing-enhanced communication without a phase reference. Quantum 5, 608 (2021). https://doi.org/10.22331/q-2021-12-23-608

    Article  Google Scholar 

  8. Rosati, M., De Palma, G., Mari, A., Giovannetti, V.: Optimal quantum state discrimination via nested binary measurements. Phys. Rev. A 95, 042307 (2017). https://doi.org/10.1103/PhysRevA.95.042307

    Article  ADS  Google Scholar 

  9. Takeoka, M., Sasaki, M.: Discrimination of the binary coherent signal: gaussian-operation limit and simple non-Gaussian near-optimal receivers. Phys. Rev. A 78, 022320 (2008). https://doi.org/10.1103/PhysRevA.78.022320

    Article  ADS  Google Scholar 

  10. Tang, G.-Z., Li, C.-Y., Wang, M.: Polarization discriminated time-bin phase-encoding measurement-device-independent quantum key distribution. Quantum Eng. 3(4), e79 (2021). https://doi.org/10.1002/que2.79

    Article  Google Scholar 

  11. Rosati, M., Mari, A., Giovannetti, V.: Capacity of coherent-state adaptive decoders with interferometry and single-mode detectors. Phys. Rev. A 96, 012317 (2017). https://doi.org/10.1103/PhysRevA.96.012317

    Article  ADS  Google Scholar 

  12. Rosati, M., Mari, A., Giovannetti, V.: Achieving the Holevo bound via a bisection decoding protocol. J. Math. Phys. 57, 062204 (2016). https://doi.org/10.1063/1.4953690

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Takeoka, M., Guha, S.: Capacity of optical communication in loss and noise with general quantum Gaussian receivers. Phys. Rev. A 89, 042309 (2014). https://doi.org/10.1103/PhysRevA.89.042309

    Article  ADS  Google Scholar 

  14. Guha,S., Wilde, M.M.: Polar coding to achieve the Holevo capacity of a pure-loss optical channel. In: 2012 IEEE International Symposium on Information Theory Proceedings, (2012), pp. 546–550, https://doi.org/10.1109/ISIT.2012.6284250

  15. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267–1269 (2021). https://doi.org/10.1016/j.scib.2021.04.016

    Article  Google Scholar 

  16. Cariolaro, G.: Quantum Communications. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-15600-2

    Book  MATH  Google Scholar 

  17. Kato, K.: Square-root measurement for ternary coherent state signal, Tamagawa University Quantum ICT Research Institute. Bulletin 3(1), 29–33 (2013)

    MathSciNet  Google Scholar 

  18. Waseda, A., Takeoka, M., Sasaki, M., Fujiwara, M., Tanaka, H.: Quantum detection of wavelength-division-multiplexing optical coherent signals. JOSA B 27(2), 259–265 (2010). https://doi.org/10.1364/JOSAB.27.000259

    Article  ADS  Google Scholar 

  19. Chen, T., Li, K., Zuo, Y., Zhu, B.: QAM Adaptive Measurements Feedback Quantum Receiver Performance. arXiv preprint arXiv:1504.02859, (2015)

  20. Kim, Y., Ko, Y. C.: Detection of quantum circular QAM signals. In: 2013 International Conference on ICT Convergence (ICTC) (pp. 1078–1082). IEEE. (2013, October) https://doi.org/10.1109/ICTC.2013.6675560

  21. Miyazaki, R., Wang, T., Usuda, T.S.: Simplification of the gram matrix eigenvalue problem for quadrature amplitude modulation signals. Entropy 24(4), 544 (2022). https://doi.org/10.3390/e24040544

    Article  ADS  MathSciNet  Google Scholar 

  22. Jabir, M.V., Burenkov, I.A., Annafianto, N.F.R., Battou, A., Polyakov, S.V.: Experimental demonstration of the near-quantum optimal receiver. OSA Contin. 3(12), 3324–3331 (2020). https://doi.org/10.1364/OSAC.409200

    Article  Google Scholar 

  23. Rosati, M.: Performance of Coherent Frequency-Shift Keying for Classical Communication on Quantum Channels. In: 2021 IEEE International Symposium on Information Theory (ISIT), pp. 902–905, (2021) https://doi.org/10.1109/ISIT45174.2021.9517959

  24. Burenkov, I.A., Jabir, M.V., Polyakov, S.V.: Practical quantum-enhanced receivers for classical communication. AVS Quantum Sci. 3, 025301 (2021). https://doi.org/10.1116/5.0036959

    Article  ADS  Google Scholar 

  25. Cariolaro, G., Corvaja, R., Pierobon, G.: Gaussian states and geometrically uniform symmetry, Physical Review A, Atomic, Molecular, and Optical. Physics 90(4), 042309 (2014). https://doi.org/10.1103/PhysRevA.90.042309

    Article  Google Scholar 

  26. Kikuchi, K.: Coherent optical communications: historical perspectives and future directions. In: Nakazawa, M., et al. (eds.) High Spectral Density Optical Communication Technologies, Chapter 2, Optical and Fiber Communications Reports 6. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-10419-0_2

    Chapter  Google Scholar 

  27. Karlsson, M., Agrell, E.: Multidimensional modulation and coding in optical transport. J. Lightwave Technol. 35(4), 876–884 (2017). https://doi.org/10.1109/JLT.2016.2615124

    Article  ADS  Google Scholar 

  28. Agrell, E.: Roadmap of optical communications. J. Opt. 18, 063002 (2016). https://doi.org/10.1088/2040-8978/18/6/063002

    Article  ADS  Google Scholar 

  29. Karlsson, M., Agrell, E.: Multilevel pulse-position modulation for optical power-efficient communication. Opt. Express 19(26), B799–B804 (2011). https://doi.org/10.1364/OE.19.00B799

    Article  Google Scholar 

  30. Liu, X., Chandrasekhar, S., Wood, T.H., Tkach, R.W., Winzer, P.J., Burrows, E.C., Chraplyvy, A.R.: M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission. Opt. Express 19, B868–B881 (2011). https://doi.org/10.1364/OE.19.00B868

    Article  Google Scholar 

  31. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics, Chapter 11. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  32. Corndorf, E., Barbosa, G., Liang, C., Yuen, H.P., Kumar, P.: High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography. Opt. Lett. 28(2), 2040–2042 (2003). https://doi.org/10.1364/OL.28.002040

    Article  ADS  Google Scholar 

  33. Cariolaro, G., Pierobon, G.: Theory of quantum pulse position modulation and related numerical problems. IEEE Trans. Commun. 58(4), 1213 (2010). https://doi.org/10.1109/TCOMM.2010.04.090103

    Article  Google Scholar 

  34. Meggetto, F.: Unambiguous State Discrimination for Quantum Communications, Thesis, Universita degli Studi di Padova. http://hdl.handle.net/20.500.12608/26455 (2019)

  35. Dalla Pozza, N., Pierobon, G.: Optimality of square-root measurements in quantum state discrimination. Phys. Rev. A 91(4), 042334 (2015). https://doi.org/10.1103/PhysRevA.91.042334

    Article  ADS  Google Scholar 

  36. Chen, Z.Y., Yan, L.S., Pan, Y., et al.: Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light Sci. Appl. 6, e16207 (2017). https://doi.org/10.1038/lsa.2016.207

    Article  Google Scholar 

  37. Perrone, P., Betti, S., Rutigliano, G.G.: Multidimensional modulation in optical fibers. Opt. Fibers Res. J. Opt. Photonics 2, 1 (2018)

    Google Scholar 

  38. Nguyen, L.E.: Optical Modulation: Advanced Techniques and Applications in Transmission Systems and Networks. CRC Press, Florida (2019). https://doi.org/10.1201/9781351228275

    Book  Google Scholar 

  39. Betti, S., Perrone, P., Rutigliano, G.G.: Multidimensional Modulations in Optical Communication Systems. CRC Press, Florida (2021). https://doi.org/10.1201/9781003002475

    Book  Google Scholar 

  40. Millar, D.S., Koike-Akino, T., Arık, S.Ö., Kojima, K., Parsons, K., Yoshida, T., Sugihara, T.: High-dimensional modulation for coherent optical communications systems. Opt. Express 22(7), 8798–8812 (2014). https://doi.org/10.1364/OE.22.008798

    Article  ADS  Google Scholar 

  41. Mumtaz, S., Othman, G.R.B., Jaouën, Y.: Space-time codes for optical fiber communication with polarization multiplexing. In: 2010 IEEE International Conference on Communications (pp. 1–5), (2010) https://doi.org/10.1109/ICC.2010.5502528

  42. Aymeric, R., Jaouën, Y., Ware, C., Alléaume, R.: Symbiotic joint operation of quantum and classical coherent communications. In: 2022 Optical Fiber Communications Conference and Exhibition (OFC) (pp. 1–3), IEEE, (2022).

  43. Djordjevic, I.B.: LDPC-Coded M-ary PSK optical coherent state quantum communication. J. Lightwave Technol. 27(5), 494–499 (2009). https://doi.org/10.1109/JLT.2008.2004566

    Article  ADS  MathSciNet  Google Scholar 

  44. Gallion, P., Mendieta, F.J., Jiang, S.: Signal and quantum noise in optical communication and in cryptography. In: Wolf, E. (ed.) Progress in Optics. Elsevier, Netherlands (2009)

    Google Scholar 

  45. Wang, X., Sun, X., Liu, Y., et al.: Transmission of photonic polarization states from geosynchronous Earth orbit satellite to the ground. Quantum Eng. 3, e73 (2021). https://doi.org/10.1002/que2.73

    Article  Google Scholar 

  46. Peng, Q., Guo, Y., Liao, Q., et al.: Satellite-to-submarine quantum communication based on measurement-device-independent continuous-variable quantum key distribution. Quantum Inf. Process 21, 61 (2022). https://doi.org/10.1007/s11128-022-03413-z

    Article  ADS  Google Scholar 

  47. Kwek, L.-C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    Article  Google Scholar 

  48. She, L.G., Zhang, C.M.: Reference-frame-independent quantum key distribution with modified coherent states. Quantum Inf Process 21, 161 (2022). https://doi.org/10.1007/s11128-022-03502-z

    Article  ADS  MathSciNet  Google Scholar 

  49. Park, J., Lee, J., Heo, J.: Improved statistical fluctuation analysis for twin-field quantum key distribution. Quantum Inf. Process 20, 127 (2021). https://doi.org/10.1007/s11128-021-03035-x

    Article  ADS  MathSciNet  Google Scholar 

  50. Lu, Y.F., Wang, Y., Jiang, M.S., et al.: Finite-key analysis of sending-or-not-sending twin-field quantum key distribution with intensity fluctuations. Quantum Inf. Process 20, 135 (2021). https://doi.org/10.1007/s11128-021-03070-8

    Article  ADS  MathSciNet  Google Scholar 

  51. Guo, H., Li, Z., Yu, S., Zhang, Y.: Towards practical quantum key distribution using telecom components. Fundam. Res. 1, 96–98 (2021). https://doi.org/10.1016/j.fmre.2020.12.002

    Article  Google Scholar 

  52. Zhou, L., Sheng, Y.-B.: Long, G-L: device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020). https://doi.org/10.1016/j.scib.2019.10.025

    Article  Google Scholar 

  53. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367–374 (2022). https://doi.org/10.1016/j.scib.2021.11.002

    Article  Google Scholar 

  54. Zhang, H., Sun, Z., Qi, R., et al.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83 (2022). https://doi.org/10.1038/s41377-022-00769-w

    Article  ADS  Google Scholar 

  55. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022). https://doi.org/10.1007/s11433-021-1863-9

    Article  ADS  MathSciNet  Google Scholar 

  56. Ghorai, S., Grangier, P., Diamanti, E., Leverrier, A.: Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X 9(2), 021059 (2019). https://doi.org/10.1103/PhysRevX.9.021059

    Article  Google Scholar 

  57. Huang, P., Fang, J., Zeng, G.: State-discrimination attack on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 89(4), 042330 (2014). https://doi.org/10.1103/PhysRevA.89.042330

    Article  ADS  Google Scholar 

  58. Xu, Q., Arvizu, A., Gallion, P., Mendieta, F.J.: Homodyne In-phase and quadrature detection of weak coherent states with carrier phase tracking. IEEE J. Select. Topics Quantum Electron. 15(6), 1581–1590 (2009). https://doi.org/10.1109/JSTQE.2009.2023803

    Article  ADS  Google Scholar 

  59. Vagniluca, I., Da Lio, B., Rusca, D., Cozzolino, D., Ding, Y., Zbinden, H., Bacco, D.: Efficient time-bin encoding for practical high-dimensional quantum key distribution. Phys. Rev. Appl. 14(1), 014051 (2020). https://doi.org/10.1103/PhysRevApplied.14.014051

    Article  ADS  Google Scholar 

  60. Yin, Z.Q., Lu, F.Y., Teng, J., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Twin-field protocols: towards intercity quantum key distribution without quantum repeaters. Fundam. Res. 1(1), 93–95 (2021). https://doi.org/10.1016/j.fmre.2020.11.001

    Article  Google Scholar 

  61. Qi, Z., Li, Y., Huang, Y., et al.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021). https://doi.org/10.1038/s41377-021-00634-2

    Article  ADS  Google Scholar 

  62. Brandt, H.E.: Quantum measurement with a positive operator-valued measure. J. Opt. B Quantum Semiclassical Opt. 5(3), S266 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  63. Domínguez-Serna, F.A., Mendieta-Jimenez, F.J., Rojas, F.: Entangled photon-added coherent states. Quantum Inf. Process. 15(8), 3121–3136 (2016). https://doi.org/10.1007/s11128-016-1325-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Leyva, J.A.L., Arvizu-Mondragon, A., García, E., Mendieta, F.J., Guzman, E.A., Gallion, P.: Detection of phase-diffused weak-coherent-states using an optical Costas loop. Opt. Eng. 51(10), 105002 (2012). https://doi.org/10.1117/1.OE.51.10.105002

    Article  ADS  Google Scholar 

  65. Ishimura, S., Kikuchi, K.: Multi-dimensional permutation-modulation format for coherent optical communications. Opt. Express 23(12), 15587–15597 (2015). https://doi.org/10.1364/OE.23.015587

    Article  ADS  Google Scholar 

  66. Hausladen, P., Wootters, W.K.: A ‘Pretty Good’ Measurement for distinguishing quantum states. J. Mod. Opt. 41(12), 2385–2390 (1994). https://doi.org/10.1080/09500349414552221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Eldar, Y.C., Forney, G.D.: On quantum detection and the squareroot measurement. IEEE Trans. Inf. Theory 47(3), 858–872 (2001). https://doi.org/10.1109/18.915636

    Article  MATH  Google Scholar 

  68. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238–278 (2009). https://doi.org/10.1364/AOP.1.000238

    Article  ADS  Google Scholar 

  69. Vilnrotter, V., Lau, C.: Quantum detection and channel capacity for communications applications. In: Proceedings SPIE 4635, Free-Space Laser Communication Technologies XIV, (26 April 2002); https://doi.org/10.1117/12.464084

  70. Davis, P.J.: Circulant Matrices, 2nd edn. Wiley, New York (2012)

    MATH  Google Scholar 

  71. Makhoul, J.: On the eigenvectors of symmetric toeplitz matrices. IEEE Trans. Acoustics Speech Signal Process. (1981). https://doi.org/10.1109/TASSP.1981.1163635

    Article  MathSciNet  Google Scholar 

  72. Renaudier, J., et al.: Generation and detection of 28 Gbaud polarization switched-QPSK in WDM long-haul transmission systems. J.Lightwave Technol. 30(9), 1312–1318 (2012). https://doi.org/10.1109/JLT.2012.2185682

    Article  ADS  Google Scholar 

  73. Bülow, H., Rahman, T., Buchali, F., Idler, W., Kuebart, W.: Transmission of 4-D Modulation Formats at 28-Gbaud. In: OSA OFC/NFOEC Technical Digest, JW2A.39, (2013) https://doi.org/10.1364/NFOEC.2013.JW2A.39

  74. Buchali, F., Bülow, H.: Experimental transmission with POLQAM and PS-QPSK modulation format using a 28-Gbaud 4-D transmitter. In: 38th European Conference and Exhibition on Optical Communications, pp. 1–3, (2012) https://doi.org/10.1364/ECEOC.2012.We.3.A.1

  75. Chen, C., Li, C. Zamani, M. Zhang, Z.: Coherent detection of a 32-point 6PolSK-QPSK modulation format. In: 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), pp. 1–3 (2013) https://doi.org/10.1364/OFC.2013.OTh3C.4

  76. Nelson, L.E., Zhou, X., Mac Suibhne, N., Ellis, A.D., Magill, P.: Experimental comparison of coherent polarization-switched QPSK to polarization-multiplexed QPSK for 10 × 100 km WDM transmission. Opt. Express 19, 10849–10856 (2011). https://doi.org/10.1364/OE.19.010849

    Article  ADS  Google Scholar 

  77. Friedman, B.: Eigenvalues of composite matrices. Math. Proc. Cambridge Philos. Soc. 57(01), 37–49 (1961). https://doi.org/10.1017/S0305004100034836

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work has been partially supported by the Mexican National Council for Science and Technology (CONACYT.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Mendieta-Jiménez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix 1. PS-QPSK composite states.

The 8 composite states for PS-QPSK are expressed by the permutations of the tensor products between the 4 states for each SOP: \(\left|\Delta \right.>,\left|\mathrm{i}\Delta \right.>, \left|-\Delta \right.>, \left|-\mathrm{i}\Delta \right.>\) and vacuum: \(\left|0\right.>\), as:

$$ \begin{aligned} \left| {\gamma_{0} } \right\rangle & = \left| \Delta \right\rangle \otimes \left| 0 \right\rangle ,\;\left| {\gamma_{1} } \right\rangle = \left| {i\Delta } \right\rangle \otimes \left| 0 \right\rangle , \left| {\gamma_{2} } \right\rangle = \left| { - \Delta } \right\rangle \otimes \left| 0 \right\rangle ,\; \\ \left| {\gamma_{3} } \right\rangle & = \left| { - i\Delta } \right\rangle \otimes \left| 0 \right\rangle ,\;\left| {\gamma_{4} } \right\rangle = \left| 0 \right\rangle \otimes \left| \Delta \right\rangle ,\left| {\gamma_{5} } \right\rangle = \left| 0 \right\rangle \otimes \left| {i\Delta } \right\rangle ,\; \\ \left| {\gamma_{6} } \right\rangle & = \left| 0 \right\rangle \otimes \left| { - \Delta } \right\rangle \;{\text{and}}\;\left| {\gamma_{7} } \right\rangle = \left| 0 \right\rangle \otimes \left| { - i\Delta } \right\rangle \\ \end{aligned} $$
(A1.1)

Appendix 2. 4PS-QPSK composite states.

\(\widehat{x}\;\mathrm{and }\;\widehat{y}\) are unit vectors in the horizontal and vertical directions, respectively; the 16 composite states for 4PS-QPSK are expressed by the permutations of the fourfold tensor products between the 4 states for each SOP: \(\left|\Delta \right.>,\left|\mathrm{i}\Delta \right.>, \left|-\Delta \right.>, \left|-\mathrm{i}\Delta \right.>\) and vacuum: \(\left|0\right.>\), as:

$$ \begin{aligned} \left| {\gamma _{0} } \right\rangle & = ~\left| \Delta \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{1} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| \Delta \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{2} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| \Delta \right\rangle \hat{x} + \left| \Delta \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{3} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| \Delta \right\rangle \hat{x} + \left| \Delta \right\rangle \hat{y}} \right), \\ \left| {\gamma _{4} } \right\rangle & = ~\left| {i\Delta } \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{5} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes ~\left| {i\Delta } \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{6} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {~\left| {i\Delta } \right\rangle \hat{x} + ~\left| {i\Delta } \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{7} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - ~\left| {i\Delta } \right\rangle \hat{x} + ~\left| {i\Delta } \right\rangle \hat{y}} \right), \\ \left| {\gamma _{8} } \right\rangle & = ~\left| { - \Delta } \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{9} } \right\rangle & = \left| 0 \right\rangle \hat{x}~ \otimes \left| { - \Delta } \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{{10}} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| { - \Delta } \right\rangle \hat{x} + \left| { - \Delta } \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{{11}} } \right\rangle & = \left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| { - \Delta } \right\rangle > \hat{x} + \left| { - \Delta } \right\rangle > \hat{y}} \right), \\ \left| {\gamma _{{12}} } \right\rangle & = ~\left| { - i\Delta } \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{{13}} } \right\rangle & = \left| 0 \right\rangle \hat{x}~ \otimes \left| { - i\Delta } \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{{14}} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| { - i\Delta } \right\rangle \hat{x} + \left| { - i\Delta } \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right), \\ \left| {\gamma _{{15}} } \right\rangle & = ~\left| 0 \right\rangle \hat{x}~ \otimes \left| 0 \right\rangle \hat{y} \otimes \frac{1}{{\sqrt 2 }}\left( {\left| 0 \right\rangle \hat{x} + \left| 0 \right\rangle \hat{y}} \right) \otimes \frac{1}{{\sqrt 2 }}\left( { - \left| { - i\Delta } \right\rangle \hat{x} + \left| { - i\Delta } \right\rangle \hat{y}} \right) \\ \end{aligned} $$
(A2.1)

Appendix 3. PM-QPSK composite states.

The 16 composite states for PM-QPSK are expressed by the permutations of the tensor inter-products between the states for each SOP: \(\left|\Delta \right.>,\left|\mathrm{i}\Delta \right.>, \left|-\Delta \right.>, \left|-\mathrm{i}\Delta \right.>\), as:

$$ \begin{aligned} \left| {\gamma_{0} } \right\rangle & = \left| \Delta \right\rangle \otimes \left| \Delta \right\rangle ,\;\left| {\gamma_{1} } \right\rangle = \left| {i\Delta } \right\rangle \otimes \left| \Delta \right\rangle ,\;\left| {\gamma_{2} } \right\rangle = \left| { - \Delta } \right\rangle \otimes \left| \Delta \right\rangle , \\ \left| {\gamma_{3} } \right\rangle & = \left| { - i\Delta } \right\rangle \otimes \left| \Delta \right\rangle ,\;\left| {\gamma_{4} } \right\rangle = \left| \Delta \right\rangle \otimes \left| {i\Delta } \right\rangle ,\;\left| {\gamma_{5} } \right\rangle = \left| {i\Delta } \right\rangle \otimes \left| {i\Delta } \right\rangle , \\ \left| {\gamma_{6} } \right\rangle & = \left| { - \Delta } \right\rangle \otimes \left| {i\Delta } \right\rangle ,\;\left| {\gamma_{7} } \right\rangle = \left| { - i\Delta } \right\rangle \otimes \left| {i\Delta } \right\rangle ,\;\left| {\gamma_{8} } \right\rangle = \left| \Delta \right. > \otimes \left| { - \Delta } \right\rangle , \\ \left| {\gamma_{9} } \right\rangle & = \left| {i\Delta } \right\rangle \otimes \left| { - \Delta } \right\rangle ,\;\left| {\gamma_{10} } \right\rangle = \left| { - \Delta } \right\rangle \otimes \left| { - \Delta } \right\rangle ,\;\left| {\gamma_{11} } \right\rangle = \left| { - \Delta } \right\rangle \otimes \left| { - \Delta } \right\rangle , \\ \left| {\gamma_{12} } \right\rangle & = \left| \Delta \right. > \otimes \left| { - i\Delta } \right\rangle ,\;\left| {\gamma_{13} } \right\rangle = \left| {i\Delta } \right. > \otimes \left| { - i\Delta } \right\rangle ,\;\left| {\gamma_{14} } \right\rangle = \left| { - \Delta } \right\rangle \otimes \left| { - i\Delta } \right\rangle \;and\; \\ \left| {\gamma_{15} } \right\rangle & = \left| { - i\Delta } \right\rangle > \otimes \left| { - i\Delta } \right\rangle \\ \end{aligned} $$
(A3.1)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvizu-Mondragón, A., Mendieta-Jiménez, F.J., López-Mercado, C.A. et al. Detection of polarization shift-keyed/switched/multiplexed quantum coherent states in M-ary photonic communication systems. Quantum Inf Process 21, 345 (2022). https://doi.org/10.1007/s11128-022-03687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03687-3

Keywords

Navigation