Skip to main content

Advertisement

Log in

Hybrid entanglement operations on an optical cavity and a superconducting transmon qutrit via a microwave resonator embedded by an electro-optic material

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Since the superconducting quantum circuit (SQC) system acts as a good platform for quantum computing, quantum entanglement operation on the photonic system and the SQC become an important task to realize the quantum network and the distributed quantum computing. In this paper, we propose local resonant schemes to generate the Bell state entanglement and construct the controlled phase gate on an optical cavity and a superconducting transmon qutrit in a hybrid system composed of an optical cavity, a transmon qutrit, and a microwave resonator (embedded by an electro-optic material). As one of the fast quantum operations on two quantum systems, resonant operations let the fidelities of schemes reach high values within a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  2. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94, 022343 (2016)

    Article  ADS  Google Scholar 

  3. Li, T., Gao, J.C., Deng, F.G., Long, G.L.: High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities. Ann. Phys. 391, 150–160 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  4. Xu, Y., Hua, Z., Chen, T., Pan, X., Li, X., Han, J., Cai, W., Ma, Y., Wang, H., Song, Y.P., Xue, Z.Y., Sun, L.: Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett. 124, 230503 (2020)

    Article  ADS  Google Scholar 

  5. Song, G.Z., Guo, J.L., Liu, Q., Wei, H.R., Long, G.L.: Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering. Phys. Rev. A 104, 012608 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  6. Dong, L., Lin, Y.F., Cui, C., Dong, H.K., Xiu, X.M., Gao, Y.J.: Single-photon controlled multi-photon polarization unitary gate based on weak cross-Kerr nonlinearities. Quantum Inf. process. 17, 114 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Yang, C.P., Zheng, Z.F., Zhang, Y.: Universal quantum gate with hybrid qubits in circuit quantum electrodynamics. Opt. Lett. 43, 005765 (2018)

    Article  ADS  Google Scholar 

  8. Yang, C.P., Su, Q.P., Zhang, Y., Nori, F.: Implementing a multi-target-qubit controlled-NOT gate with logical qubits outside a decoherence-free subspace and its application in creating quantum entangled states. Phys. Rev. A 101, 032329 (2020)

    Article  ADS  Google Scholar 

  9. Zhang, K., Ma, J.J., Zhang, X., Thopson, J., Vedral, V., Kim, K., Gu, M.L.: Operational effects of the UNOT gate on classical and quantum correlations. Sci. Bull. 63, 12 (2018)

    Article  Google Scholar 

  10. Zhang, M., Feng, L.T., Li, M., Chen, Y., Zhang, L., He, D.Y., Guo, G.P., Ren, X.F., Dai, D.X.: Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett. 126, 130501 (2021)

    Article  ADS  Google Scholar 

  11. Qi, Z.T., Li, Y.H., Huang, Y.W., Feng, J., Zheng, Y.L., Chen, X.F.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)

    Article  ADS  Google Scholar 

  12. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)

    Article  ADS  Google Scholar 

  13. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 4 (2022)

    Article  Google Scholar 

  14. Zhang, H.R., Sun, Z., Qi, R.Y., Yin, L.G., Long, G.L., Lu, G.H.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83 (2022)

    Article  ADS  Google Scholar 

  15. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  16. Yin, H.L., Cao, W.F., Fu, Y., Tang, Y.L., Liu, Y., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions. Opt. Lett. 39, 5451–5454 (2014)

    Article  ADS  Google Scholar 

  17. Cui, X.Z., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019)

    Article  ADS  Google Scholar 

  18. Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: A survey on advances of quantum repeater. Europhys. Lett. 136, 14001 (2021)

    Article  ADS  Google Scholar 

  19. Han, Y.H., Cao, C., Fan, L., Zhang, R.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express 29, 13 (2021)

    Article  Google Scholar 

  20. Nagata, K., Kuramitani, K., Sekiguchi, Y., Kosaka, H.: Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat. Commun. 9, 3227 (2018)

    Article  ADS  Google Scholar 

  21. Stasssi, R., Cirio, M., Nori, F.: Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime. NPJ Quantum Inf. 6, 67 (2020)

    Article  ADS  Google Scholar 

  22. Long, G.L.: Nonadiabatic geometric gates with a superconducting qubit. Sci. China Phys. Mech. Astron. 64, 250361 (2021)

    Article  ADS  Google Scholar 

  23. Wang, Y.M., Wang, G.C., Zhou, H., Xu, Z.Y., Ao, L., Wu, C.F.: Auxiliary-qubit-assisted holonomic quantum gates on superconducting circuits. Quantum Inf. process. 21, 10 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  24. Xu, G.F., Tong, D.M.: Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems. AAPPS Bull. 32, 13 (2022)

    Article  ADS  Google Scholar 

  25. Zhao, P.Z., Dong, Z.J.Z., Zhang, Z.X., Guo, G.P., Tong, D.M., Yin, Y.: Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Sci. China Phys. Mech. Astron. 64, 250362 (2021)

    Article  ADS  Google Scholar 

  26. Lambert, M., Cirio, M., Delbecq, M., Allison, G., Marx, M., Tarucha, S., Nori, F.: Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED. Phys. Rev. B 13, 082007 (2018)

    Google Scholar 

  27. Wei, H.R., Zheng, Y.B., Hua, M., Xu, G.F.: Robust-fidelity hyperparallel controlled-phase-flip gate through microcavities. Appl. Phys. Express 13, 082007 (2020)

    Article  ADS  Google Scholar 

  28. Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  Google Scholar 

  29. Wang, B.L., Hei, X.L., Dong, X.L., Chen, J.Q., Qiao, Y.F., Li, P.B.: Vortex-photon-spin tripartite entanglement in a hybrid quantum system. Quantum Inf. process. 20, 366 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  30. Hua, M., Tao, M.J., Zhou, Z.R., Wei, H.R.: Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR. Quantum Inf. process. 19, 187 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  31. Wei, H.R., Liu, W.Q., Chen, N.Y.: Implementing a two-photon three-degrees-of-freedom hyper-parallel controlled phase flip gate through cavity-assisted interactions. Ann. Phys. 5332, 1900578 (2020)

    Article  MathSciNet  Google Scholar 

  32. Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25, 10863–10873 (2017)

    Article  ADS  Google Scholar 

  33. Ren, B.C., Wang, A.H., Alsaedi, A., Hayat, T., Deng, F.G.: Three-photon polarization-spatical hyperparallel quantum fredkin gate assisted by diamond nitrogen vacancy center in optical cavity. Ann. Phys. 530, 1800043 (2018)

    Article  MathSciNet  Google Scholar 

  34. Yang, S.L., Zhou, Y., Lu, D.Y., Ma, M., Wang, Q.L., Zhang, X.Q.: Adiabatic preparation of maximum entanglement in hybrid quantum systems with the \(Z_{2}\) symmetry. Quantum Eng. 3, 65 (2021)

    Article  Google Scholar 

  35. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Macri, V., Nori, F., Kockum, A.F.: Simple preparation of bell and Greenberger–Horne–Zeilinger states using ultrastrong-coupling circuit QED. Phys. Rev. A 98, 062327 (2018)

    Article  ADS  Google Scholar 

  37. Blais, A., Grimsmo, A.L., Grivin, S.M., Wallraffe, A.: Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  38. Li, P.B., Xiang, Z.L., Rabl, P., Nori, F.: Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117, 015502 (2016)

    Article  ADS  Google Scholar 

  39. Georgescu, I.M., Asshhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  40. Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., Chiaro, B., Mutus, J., Neill, C., O’Malley, P., Roushan, P., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M.: Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)

    Article  ADS  Google Scholar 

  41. Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  42. Feng, Z.B., Lu, X.J.: Optimal controls of invariant-based population transfer in a superconducting qutrit. Quantum Inf. Process. 19, 83 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  43. Liu, T., Xiong, S.J., Cao, X.Z., Su, Q.P., Yang, C.P.: Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics. Opt. Lett. 40, 005602 (2015)

    Article  ADS  Google Scholar 

  44. Li, X., Ma, Y., Han, J., Chen, T., Xu, Y., Cai, W., Wang, H., Song, Y.P., Xue, Z.Y., Yin, Z.Q., Sun, L.Y.: Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl. 10, 054009 (2018)

    Article  ADS  Google Scholar 

  45. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)

    Article  ADS  Google Scholar 

  46. Ball, P.: First quantum computer to pack 100 qubits enters crowded race. Nature 599, 542 (2021)

    Article  Google Scholar 

  47. Ye, B.L., Zheng, Z.F., Zhang, Y., Yang, C.P.: Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n-1 microwave photonic qubits. Opt. Express 26, 030689 (2018)

    Article  Google Scholar 

  48. Lu, X.Y., Zhu, G.L., Zhu, L.L., Wu, Y.: Entanglement and quantum superposition induced by a single photon. Phys. Rev. A 97, 033807 (2018)

    Article  ADS  Google Scholar 

  49. Su, Q.P., Zhu, H.H., Yu, L., Zhang, Y., Xiong, S.J., Liu, J.M., Yang, C.P.: Generating double NOON states of photons in circuit QED. Phys. Rev. A 95, 022339 (2017)

    Article  ADS  Google Scholar 

  50. Zhu, D.Q., Li, P.B.: Preparation of entangled states of microwave photons in a hybrid system via the electro-optic effect. Opt. Express 25, 028305 (2017)

    Article  Google Scholar 

  51. Fan, L.R., Zou, C.L., Cheng, R.S., Guo, X., Han, X., Gong, Z., Wang, S.H., Tang, H.X.: Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018)

    Article  ADS  Google Scholar 

  52. Jiang, C., Tserkis, S., Collins, K., Onoe, S., Li, Y., Tian, L.: Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface. Phys. Rev. A 101, 042320 (2020)

    Article  ADS  Google Scholar 

  53. Mirhosseini, M., Sipahigil, A., Kalaee, M., Painter, O.: Superconducting qubit to optical photon transduction. Nature 588, 7839 (2020)

    Article  Google Scholar 

  54. Liu, T., Zhao, J.L., Guo, B.Q., Wu, Q.C., Zhou, Y.H., Yang, P.: One-step implementation of a coherent conversion between microwave and optical cavities via an ensemble of nitrogen-vacancy centers. Phys. Rev. A 103, 023706 (2021)

    Article  ADS  Google Scholar 

  55. Tsang, M.: Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010)

    Article  ADS  Google Scholar 

  56. Tsang, M.: Cavity quantum electro-optics. Input-output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011)

    Article  ADS  Google Scholar 

  57. Javerzac-Galy, C., Plekhanov, K., Bernier, N.R., Toth, L.D., Feofanov, A.K., Kippenberg, T.J.: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016)

    Article  ADS  Google Scholar 

  58. Li, C.H., Li, P.B.: Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect. Phys. Rev. A 97, 052319 (2018)

    Article  ADS  Google Scholar 

  59. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  60. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  61. Long, G.L.: Electro-optic modulation using lithium niobate metasurfaces. Sci. China Phys. Mech. Astron. 64, 240361 (2021)

    Article  ADS  Google Scholar 

  62. Gao, B.F., Ren, M.X., Wu, W., Cai, W., Xu, J.J.: Electro-optic lithium niobate metasurfeces. Sci. China Phys. Mech. Astron. 64, 240362 (2021)

    Article  ADS  Google Scholar 

  63. Yariv, A.: Quantum Electronics. Wiley, New York (1989)

    Google Scholar 

  64. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University, Cambridge, UK (1997)

    Book  Google Scholar 

  65. Haack, G., Helmer, F., Mariantoni, M., Marquardt, F., Solano, E.: Resonant quantum gates in circuit quantum electrodynamics. Phys. Rev. B 82, 024514 (2010)

    Article  ADS  Google Scholar 

  66. Bruno, A., de Lange, G., Asaad, S., van der Enden, K.L., Langford, N.K., DiCarlo, L.: Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl. Phys. Lett. 106, 182601 (2015)

    Article  ADS  Google Scholar 

  67. Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., OMalley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrom, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)

  68. Chang, J.B., Vissers, M.R., Corcoles, A.D., Sandberg, M., Gao, J., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)

    Article  ADS  Google Scholar 

  69. Stanwix, P.L., Pham, L.M., Maze, J.R., Le Sage, D., Yeung, T.K., Cappellaro, P., Hemmer, P.R., Yacoby, A., Lukin, M.D., Walsworth, R.L.: Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201 (2010)

    Article  ADS  Google Scholar 

  70. Tuckett, D.K., Bartlett, S.D., Flammia, S.T., Brown, B.J.: Fault-tolerant thresholds for the surface code in excess of \(5\%\) under biased noise. Phys. Rev. Lett. 124, 130501 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Hua was supported by the National Natural Science Foundation of China under Grant No. 11704281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YM., Tao, MJ. & Hua, M. Hybrid entanglement operations on an optical cavity and a superconducting transmon qutrit via a microwave resonator embedded by an electro-optic material. Quantum Inf Process 21, 353 (2022). https://doi.org/10.1007/s11128-022-03694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03694-4

Keywords