Abstract
Since the superconducting quantum circuit (SQC) system acts as a good platform for quantum computing, quantum entanglement operation on the photonic system and the SQC become an important task to realize the quantum network and the distributed quantum computing. In this paper, we propose local resonant schemes to generate the Bell state entanglement and construct the controlled phase gate on an optical cavity and a superconducting transmon qutrit in a hybrid system composed of an optical cavity, a transmon qutrit, and a microwave resonator (embedded by an electro-optic material). As one of the fast quantum operations on two quantum systems, resonant operations let the fidelities of schemes reach high values within a short time.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in this published article.
References
Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge, UK (2000)
Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94, 022343 (2016)
Li, T., Gao, J.C., Deng, F.G., Long, G.L.: High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities. Ann. Phys. 391, 150–160 (2018)
Xu, Y., Hua, Z., Chen, T., Pan, X., Li, X., Han, J., Cai, W., Ma, Y., Wang, H., Song, Y.P., Xue, Z.Y., Sun, L.: Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett. 124, 230503 (2020)
Song, G.Z., Guo, J.L., Liu, Q., Wei, H.R., Long, G.L.: Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering. Phys. Rev. A 104, 012608 (2021)
Dong, L., Lin, Y.F., Cui, C., Dong, H.K., Xiu, X.M., Gao, Y.J.: Single-photon controlled multi-photon polarization unitary gate based on weak cross-Kerr nonlinearities. Quantum Inf. process. 17, 114 (2018)
Yang, C.P., Zheng, Z.F., Zhang, Y.: Universal quantum gate with hybrid qubits in circuit quantum electrodynamics. Opt. Lett. 43, 005765 (2018)
Yang, C.P., Su, Q.P., Zhang, Y., Nori, F.: Implementing a multi-target-qubit controlled-NOT gate with logical qubits outside a decoherence-free subspace and its application in creating quantum entangled states. Phys. Rev. A 101, 032329 (2020)
Zhang, K., Ma, J.J., Zhang, X., Thopson, J., Vedral, V., Kim, K., Gu, M.L.: Operational effects of the UNOT gate on classical and quantum correlations. Sci. Bull. 63, 12 (2018)
Zhang, M., Feng, L.T., Li, M., Chen, Y., Zhang, L., He, D.Y., Guo, G.P., Ren, X.F., Dai, D.X.: Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett. 126, 130501 (2021)
Qi, Z.T., Li, Y.H., Huang, Y.W., Feng, J., Zheng, Y.L., Chen, X.F.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)
Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)
Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 4 (2022)
Zhang, H.R., Sun, Z., Qi, R.Y., Yin, L.G., Long, G.L., Lu, G.H.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83 (2022)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Yin, H.L., Cao, W.F., Fu, Y., Tang, Y.L., Liu, Y., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions. Opt. Lett. 39, 5451–5454 (2014)
Cui, X.Z., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019)
Yan, P.S., Zhou, L., Zhong, W., Sheng, Y.B.: A survey on advances of quantum repeater. Europhys. Lett. 136, 14001 (2021)
Han, Y.H., Cao, C., Fan, L., Zhang, R.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express 29, 13 (2021)
Nagata, K., Kuramitani, K., Sekiguchi, Y., Kosaka, H.: Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat. Commun. 9, 3227 (2018)
Stasssi, R., Cirio, M., Nori, F.: Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime. NPJ Quantum Inf. 6, 67 (2020)
Long, G.L.: Nonadiabatic geometric gates with a superconducting qubit. Sci. China Phys. Mech. Astron. 64, 250361 (2021)
Wang, Y.M., Wang, G.C., Zhou, H., Xu, Z.Y., Ao, L., Wu, C.F.: Auxiliary-qubit-assisted holonomic quantum gates on superconducting circuits. Quantum Inf. process. 21, 10 (2022)
Xu, G.F., Tong, D.M.: Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems. AAPPS Bull. 32, 13 (2022)
Zhao, P.Z., Dong, Z.J.Z., Zhang, Z.X., Guo, G.P., Tong, D.M., Yin, Y.: Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Sci. China Phys. Mech. Astron. 64, 250362 (2021)
Lambert, M., Cirio, M., Delbecq, M., Allison, G., Marx, M., Tarucha, S., Nori, F.: Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED. Phys. Rev. B 13, 082007 (2018)
Wei, H.R., Zheng, Y.B., Hua, M., Xu, G.F.: Robust-fidelity hyperparallel controlled-phase-flip gate through microcavities. Appl. Phys. Express 13, 082007 (2020)
Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)
Wang, B.L., Hei, X.L., Dong, X.L., Chen, J.Q., Qiao, Y.F., Li, P.B.: Vortex-photon-spin tripartite entanglement in a hybrid quantum system. Quantum Inf. process. 20, 366 (2021)
Hua, M., Tao, M.J., Zhou, Z.R., Wei, H.R.: Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR. Quantum Inf. process. 19, 187 (2020)
Wei, H.R., Liu, W.Q., Chen, N.Y.: Implementing a two-photon three-degrees-of-freedom hyper-parallel controlled phase flip gate through cavity-assisted interactions. Ann. Phys. 5332, 1900578 (2020)
Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25, 10863–10873 (2017)
Ren, B.C., Wang, A.H., Alsaedi, A., Hayat, T., Deng, F.G.: Three-photon polarization-spatical hyperparallel quantum fredkin gate assisted by diamond nitrogen vacancy center in optical cavity. Ann. Phys. 530, 1800043 (2018)
Yang, S.L., Zhou, Y., Lu, D.Y., Ma, M., Wang, Q.L., Zhang, X.Q.: Adiabatic preparation of maximum entanglement in hybrid quantum systems with the \(Z_{2}\) symmetry. Quantum Eng. 3, 65 (2021)
Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017)
Macri, V., Nori, F., Kockum, A.F.: Simple preparation of bell and Greenberger–Horne–Zeilinger states using ultrastrong-coupling circuit QED. Phys. Rev. A 98, 062327 (2018)
Blais, A., Grimsmo, A.L., Grivin, S.M., Wallraffe, A.: Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)
Li, P.B., Xiang, Z.L., Rabl, P., Nori, F.: Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117, 015502 (2016)
Georgescu, I.M., Asshhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)
Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., Chiaro, B., Mutus, J., Neill, C., O’Malley, P., Roushan, P., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M.: Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)
Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)
Feng, Z.B., Lu, X.J.: Optimal controls of invariant-based population transfer in a superconducting qutrit. Quantum Inf. Process. 19, 83 (2020)
Liu, T., Xiong, S.J., Cao, X.Z., Su, Q.P., Yang, C.P.: Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics. Opt. Lett. 40, 005602 (2015)
Li, X., Ma, Y., Han, J., Chen, T., Xu, Y., Cai, W., Wang, H., Song, Y.P., Xue, Z.Y., Yin, Z.Q., Sun, L.Y.: Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl. 10, 054009 (2018)
Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)
Ball, P.: First quantum computer to pack 100 qubits enters crowded race. Nature 599, 542 (2021)
Ye, B.L., Zheng, Z.F., Zhang, Y., Yang, C.P.: Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n-1 microwave photonic qubits. Opt. Express 26, 030689 (2018)
Lu, X.Y., Zhu, G.L., Zhu, L.L., Wu, Y.: Entanglement and quantum superposition induced by a single photon. Phys. Rev. A 97, 033807 (2018)
Su, Q.P., Zhu, H.H., Yu, L., Zhang, Y., Xiong, S.J., Liu, J.M., Yang, C.P.: Generating double NOON states of photons in circuit QED. Phys. Rev. A 95, 022339 (2017)
Zhu, D.Q., Li, P.B.: Preparation of entangled states of microwave photons in a hybrid system via the electro-optic effect. Opt. Express 25, 028305 (2017)
Fan, L.R., Zou, C.L., Cheng, R.S., Guo, X., Han, X., Gong, Z., Wang, S.H., Tang, H.X.: Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018)
Jiang, C., Tserkis, S., Collins, K., Onoe, S., Li, Y., Tian, L.: Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface. Phys. Rev. A 101, 042320 (2020)
Mirhosseini, M., Sipahigil, A., Kalaee, M., Painter, O.: Superconducting qubit to optical photon transduction. Nature 588, 7839 (2020)
Liu, T., Zhao, J.L., Guo, B.Q., Wu, Q.C., Zhou, Y.H., Yang, P.: One-step implementation of a coherent conversion between microwave and optical cavities via an ensemble of nitrogen-vacancy centers. Phys. Rev. A 103, 023706 (2021)
Tsang, M.: Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010)
Tsang, M.: Cavity quantum electro-optics. Input-output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011)
Javerzac-Galy, C., Plekhanov, K., Bernier, N.R., Toth, L.D., Feofanov, A.K., Kippenberg, T.J.: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016)
Li, C.H., Li, P.B.: Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect. Phys. Rev. A 97, 052319 (2018)
You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)
Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)
Long, G.L.: Electro-optic modulation using lithium niobate metasurfaces. Sci. China Phys. Mech. Astron. 64, 240361 (2021)
Gao, B.F., Ren, M.X., Wu, W., Cai, W., Xu, J.J.: Electro-optic lithium niobate metasurfeces. Sci. China Phys. Mech. Astron. 64, 240362 (2021)
Yariv, A.: Quantum Electronics. Wiley, New York (1989)
Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University, Cambridge, UK (1997)
Haack, G., Helmer, F., Mariantoni, M., Marquardt, F., Solano, E.: Resonant quantum gates in circuit quantum electrodynamics. Phys. Rev. B 82, 024514 (2010)
Bruno, A., de Lange, G., Asaad, S., van der Enden, K.L., Langford, N.K., DiCarlo, L.: Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl. Phys. Lett. 106, 182601 (2015)
Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., OMalley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrom, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)
Chang, J.B., Vissers, M.R., Corcoles, A.D., Sandberg, M., Gao, J., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)
Stanwix, P.L., Pham, L.M., Maze, J.R., Le Sage, D., Yeung, T.K., Cappellaro, P., Hemmer, P.R., Yacoby, A., Lukin, M.D., Walsworth, R.L.: Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201 (2010)
Tuckett, D.K., Bartlett, S.D., Flammia, S.T., Brown, B.J.: Fault-tolerant thresholds for the surface code in excess of \(5\%\) under biased noise. Phys. Rev. Lett. 124, 130501 (2020)
Acknowledgements
M. Hua was supported by the National Natural Science Foundation of China under Grant No. 11704281.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, YM., Tao, MJ. & Hua, M. Hybrid entanglement operations on an optical cavity and a superconducting transmon qutrit via a microwave resonator embedded by an electro-optic material. Quantum Inf Process 21, 353 (2022). https://doi.org/10.1007/s11128-022-03694-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03694-4