Abstract
Recently, Zuo et al. (Quantum Inf Process 20:382, 2021) construct the nonlocal sets of tripartite orthogonal product states with less members. Then, how much entanglement resource is sufficient to locally distinguish these states, and very little is known about entanglement-assisted state discrimination in multipartite case. In this paper, with only a \(2\otimes 2\) maximally entangled state, we first prove the orthogonal product states in \({\mathbb {C}}^{d} \otimes {\mathbb {C}}^{d} \otimes {\mathbb {C}}^{d}\) can be locally distinguished, where \(d \geqslant 3\). Then, considering \({\mathbb {C}}^{d} \otimes {\mathbb {C}}^{d+1} \otimes {\mathbb {C}}^{d+2}\) quantum system, we also present that the orthogonal product states are locally distinguishable by using a \(2\otimes 2\) maximally entangled state, where \(d \geqslant 3\). Finally, we generalize the distinguishing method for general tripartite quantum systems. The above results can let us better understand the role of entanglement resource in quantum information processing, and also reveal the phenomenon of less nonlocality with more entanglement.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)
Ghosh, S., Kar, G., Roy, A., Sen, A., Sen, U.: Distinguishability of Bell states. Phys. Rev. Lett. 87, 277902 (2001)
DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379 (2003)
Fan, H.: Distinguishability and indistinguishability by localoperations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)
Chen, P.X., Li, C.Z.: Distinguishing the elements of a full product basis set needs only projective measurements and classical communication. Phys. Rev. A 70, 022306 (2004)
Watrous, J.: Bipartite subspaces having no bases distinguishable by local operations and classical communication. Phys. Rev. Lett. 95, 080505 (2005)
Duan, R.Y., Feng, Y., Ji, Z.F., Ying, M.S.: Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. Phys. Rev. Lett. 98, 230502 (2007)
Yu, N.K., Duan, R.Y., Ying, M.S.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)
Yang, Y.-H., Wang, C.-H., Yuan, J.-T., Wu, X., Zuo, H.-J.: Local distinguishability of generalized Bell states. Quantum Inf. Process. 17, 29 (2018)
Zhang, Z.-C., Gao, F., Cao, Y., Qin, S.-J., Wen, Q.-Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)
Zhang, X., Weng, J., Tan, X., Luo, W.: Indistinguishability of pure orthogonal product states by LOCC. Quantum Inf. Process. 16, 168 (2017)
Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)
Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)
Rinaldis, S.D.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70, 022309 (2004)
Zhang, Z.-C., Zhang, K.-J., Gao, F., Wen, Q.-Y., Oh, C.H.: Construction of nonlocal multipartite quantum states. Phys. Rev. A 95, 052344 (2017)
Halder, S.: Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A 98, 022303 (2018)
Horodecki, M., Sen, A., Sen, U., Horodecki, K.: Local indistinguishability: more nonlocality with less entanglement. Phys. Rev. Lett. 90, 047902 (2003)
Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)
Feng, Y., Shi, Y.Y.: Characterizing Locally Indistinguishable Orthogonal Product States. IEEE Trans. Info. Theory 55, 2799 (2009)
Bandyopadhyay, S.: More nonlocality with less purity. Phys. Rev. Lett. 106, 210402 (2011)
Childs, A.M., Leung, D., Mančinska, L., Ozols, M.: A framework for bounding nonlocality of state discrimination. Commun. Math. Phys. 323, 1121 (2013)
Zhang, Z.-C., Gao, F., Tian, G.-J., Cao, T.-Q., Wen, Q.-Y.: Nonlocality of orthogonal product basis quantum states. Phys. Rev. A 90, 022313 (2014)
Zhang, Z.-C., Gao, F., Qin, S.-J., Yang, Y.-H., Wen, Q.-Y.: Nonlocality of orthogonal product states. Phys. Rev. A 92, 012332 (2015)
Croke, S., Barnett, S.M.: Difficulty of distinguishing product states locally. Phys. Rev. A 95, 012337 (2017)
Wang, Y.-L., Li, M.-S., Zheng, Z.-J., Fei, S.-M.: The local indistinguishability of multipartite product states. Quantum Inf. Process. 16, 5 (2017)
Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J., Zuo, H.-J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)
Lebl, J., Shakeel, A., Wallach, N.: Local distinguishability of generic unentangled orthonormal bases. Phys. Rev. A 93, 012330 (2016)
Jiang, D.-H., Xu, G.-B.: Nonlocal sets of orthogonal product states in an arbitrary multipartite quantum system. Phys. Rev. A 102, 032211 (2020)
Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)
DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Info. Theory 48, 580 (2002)
Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813 (2009)
Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)
Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Comput. 26, 1484 (1997)
Cohen, S.M.: Understanding entanglement as resource: Locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)
Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)
Bandyopadhyay, S., Rahaman, R., Wootters, W.K.: Entanglement cost of two-qubit orthogonal measurements. J. Phys. A: Math. Theor. 43, 455303 (2010)
Bandyopadhyay, S., Halder, S., Nathanson, M.: Optimal resource states for local state discrimination. Phys. Rev. A 97, 022314 (2018)
Zhang, Z.-C., Gao, F., Cao, T.-Q., Qin, S.-J., Wen, Q.-Y.: Entanglement as a resource to distinguish orthogonal product states. Sci. Rep. 6, 30493 (2016)
Li, L.-J., Gao, F., Zhang, Z.-C., Wen, Q.-Y.: Using entanglement more efficiently in distinguishing orthogonal product states by LOCC. Quantum Inf. Process. 18, 330 (2019)
Zhang, Z.-C., Wu, X., Zhang, X.: Locally distinguishing unextendible product bases by using entanglement efficiently. Phys. Rev. A 101, 022306 (2020)
Zhang, Z.-C., Song, Y.-Q., Song, T.-T., Gao, F., Qin, S.-J., Wen, Q.-Y.: Local distinguishability of orthogonal quantum states with multiple copies of \(2\otimes 2\) maximally entangled states. Phys. Rev. A 97, 022334 (2018)
Rout, S., Maity, A.G., Mukherjee, A., Halder, S., Banik, M.: Genuinely nonlocal product bases: classification and entanglement assisted discrimination. Phys. Rev. A 100, 032321 (2019)
Halder, S., Sengupta, R.: Distinguishability classes, resource sharing, and bound entanglement distribution. Phys. Rev. A 101, 012311 (2020)
Zuo, H.-J., Liu, J.-H., Zhen, X.-F., Fei, S.-M.: Nonlocal sets of orthogonal multipartite product states with less members. Quantum Inf. Process. 20, 382 (2021)
Acknowledgements
This work was supported by the NSFC (Grant No. 61901030), and the Fundamental Research Funds for the Central Universities (Grant No. 06500172).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, ZC., Wei, XJ. & Wang, AL. Entanglement as a resource to locally distinguish tripartite quantum states. Quantum Inf Process 21, 342 (2022). https://doi.org/10.1007/s11128-022-03696-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03696-2