Skip to main content

Advertisement

Log in

Entanglement as a resource to locally distinguish tripartite quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Zuo et al. (Quantum Inf Process 20:382, 2021) construct the nonlocal sets of tripartite orthogonal product states with less members. Then, how much entanglement resource is sufficient to locally distinguish these states, and very little is known about entanglement-assisted state discrimination in multipartite case. In this paper, with only a \(2\otimes 2\) maximally entangled state, we first prove the orthogonal product states in \({\mathbb {C}}^{d} \otimes {\mathbb {C}}^{d} \otimes {\mathbb {C}}^{d}\) can be locally distinguished, where \(d \geqslant 3\). Then, considering \({\mathbb {C}}^{d} \otimes {\mathbb {C}}^{d+1} \otimes {\mathbb {C}}^{d+2}\) quantum system, we also present that the orthogonal product states are locally distinguishable by using a \(2\otimes 2\) maximally entangled state, where \(d \geqslant 3\). Finally, we generalize the distinguishing method for general tripartite quantum systems. The above results can let us better understand the role of entanglement resource in quantum information processing, and also reveal the phenomenon of less nonlocality with more entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ghosh, S., Kar, G., Roy, A., Sen, A., Sen, U.: Distinguishability of Bell states. Phys. Rev. Lett. 87, 277902 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  4. DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Fan, H.: Distinguishability and indistinguishability by localoperations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)

    Article  ADS  Google Scholar 

  6. Chen, P.X., Li, C.Z.: Distinguishing the elements of a full product basis set needs only projective measurements and classical communication. Phys. Rev. A 70, 022306 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Watrous, J.: Bipartite subspaces having no bases distinguishable by local operations and classical communication. Phys. Rev. Lett. 95, 080505 (2005)

    Article  ADS  Google Scholar 

  8. Duan, R.Y., Feng, Y., Ji, Z.F., Ying, M.S.: Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. Phys. Rev. Lett. 98, 230502 (2007)

    Article  ADS  Google Scholar 

  9. Yu, N.K., Duan, R.Y., Ying, M.S.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)

    Article  ADS  Google Scholar 

  10. Yang, Y.-H., Wang, C.-H., Yuan, J.-T., Wu, X., Zuo, H.-J.: Local distinguishability of generalized Bell states. Quantum Inf. Process. 17, 29 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zhang, Z.-C., Gao, F., Cao, Y., Qin, S.-J., Wen, Q.-Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhang, X., Weng, J., Tan, X., Luo, W.: Indistinguishability of pure orthogonal product states by LOCC. Quantum Inf. Process. 16, 168 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Rinaldis, S.D.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70, 022309 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zhang, Z.-C., Zhang, K.-J., Gao, F., Wen, Q.-Y., Oh, C.H.: Construction of nonlocal multipartite quantum states. Phys. Rev. A 95, 052344 (2017)

    Article  ADS  Google Scholar 

  17. Halder, S.: Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A 98, 022303 (2018)

    Article  ADS  Google Scholar 

  18. Horodecki, M., Sen, A., Sen, U., Horodecki, K.: Local indistinguishability: more nonlocality with less entanglement. Phys. Rev. Lett. 90, 047902 (2003)

    Article  ADS  Google Scholar 

  19. Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  20. Feng, Y., Shi, Y.Y.: Characterizing Locally Indistinguishable Orthogonal Product States. IEEE Trans. Info. Theory 55, 2799 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bandyopadhyay, S.: More nonlocality with less purity. Phys. Rev. Lett. 106, 210402 (2011)

    Article  ADS  Google Scholar 

  22. Childs, A.M., Leung, D., Mančinska, L., Ozols, M.: A framework for bounding nonlocality of state discrimination. Commun. Math. Phys. 323, 1121 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhang, Z.-C., Gao, F., Tian, G.-J., Cao, T.-Q., Wen, Q.-Y.: Nonlocality of orthogonal product basis quantum states. Phys. Rev. A 90, 022313 (2014)

    Article  ADS  Google Scholar 

  24. Zhang, Z.-C., Gao, F., Qin, S.-J., Yang, Y.-H., Wen, Q.-Y.: Nonlocality of orthogonal product states. Phys. Rev. A 92, 012332 (2015)

    Article  ADS  Google Scholar 

  25. Croke, S., Barnett, S.M.: Difficulty of distinguishing product states locally. Phys. Rev. A 95, 012337 (2017)

    Article  ADS  Google Scholar 

  26. Wang, Y.-L., Li, M.-S., Zheng, Z.-J., Fei, S.-M.: The local indistinguishability of multipartite product states. Quantum Inf. Process. 16, 5 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J., Zuo, H.-J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)

    Article  ADS  MATH  Google Scholar 

  28. Lebl, J., Shakeel, A., Wallach, N.: Local distinguishability of generic unentangled orthonormal bases. Phys. Rev. A 93, 012330 (2016)

    Article  ADS  Google Scholar 

  29. Jiang, D.-H., Xu, G.-B.: Nonlocal sets of orthogonal product states in an arbitrary multipartite quantum system. Phys. Rev. A 102, 032211 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)

    Article  ADS  Google Scholar 

  31. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Info. Theory 48, 580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  35. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)

    Article  ADS  Google Scholar 

  37. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cohen, S.M.: Understanding entanglement as resource: Locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)

    Article  ADS  Google Scholar 

  40. Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  41. Bandyopadhyay, S., Rahaman, R., Wootters, W.K.: Entanglement cost of two-qubit orthogonal measurements. J. Phys. A: Math. Theor. 43, 455303 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bandyopadhyay, S., Halder, S., Nathanson, M.: Optimal resource states for local state discrimination. Phys. Rev. A 97, 022314 (2018)

    Article  ADS  Google Scholar 

  43. Zhang, Z.-C., Gao, F., Cao, T.-Q., Qin, S.-J., Wen, Q.-Y.: Entanglement as a resource to distinguish orthogonal product states. Sci. Rep. 6, 30493 (2016)

    Article  ADS  Google Scholar 

  44. Li, L.-J., Gao, F., Zhang, Z.-C., Wen, Q.-Y.: Using entanglement more efficiently in distinguishing orthogonal product states by LOCC. Quantum Inf. Process. 18, 330 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. Zhang, Z.-C., Wu, X., Zhang, X.: Locally distinguishing unextendible product bases by using entanglement efficiently. Phys. Rev. A 101, 022306 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. Zhang, Z.-C., Song, Y.-Q., Song, T.-T., Gao, F., Qin, S.-J., Wen, Q.-Y.: Local distinguishability of orthogonal quantum states with multiple copies of \(2\otimes 2\) maximally entangled states. Phys. Rev. A 97, 022334 (2018)

    Article  ADS  Google Scholar 

  47. Rout, S., Maity, A.G., Mukherjee, A., Halder, S., Banik, M.: Genuinely nonlocal product bases: classification and entanglement assisted discrimination. Phys. Rev. A 100, 032321 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. Halder, S., Sengupta, R.: Distinguishability classes, resource sharing, and bound entanglement distribution. Phys. Rev. A 101, 012311 (2020)

    Article  ADS  Google Scholar 

  49. Zuo, H.-J., Liu, J.-H., Zhen, X.-F., Fei, S.-M.: Nonlocal sets of orthogonal multipartite product states with less members. Quantum Inf. Process. 20, 382 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Grant No. 61901030), and the Fundamental Research Funds for the Central Universities (Grant No. 06500172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Chao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZC., Wei, XJ. & Wang, AL. Entanglement as a resource to locally distinguish tripartite quantum states. Quantum Inf Process 21, 342 (2022). https://doi.org/10.1007/s11128-022-03696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03696-2

Keywords