Skip to main content
Log in

Physical constraint-aware CNOT quantum circuit synthesis and optimization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Although the number of qubits in noisy intermediate scale quantum (NISQ) devices has been increased, they still face various physical restrictions, including nearest neighbor (NN) interaction and gate error. The NN interaction and the gate error affect the quantum circuit execution success rate. Since each gate of the CNOT circuit is composed of two qubits, its mapping and optimization are affected by these two constraints. In this paper, we present a physical constraint-aware CNOT quantum circuit synthesis and optimization approach. It consists of two components: the physical constraint-aware CNOT circuit synthesis and the matrix transformation-based optimization approach. The physical constraint-aware CNOT circuit synthesis uses a weighted Steiner tree to account for CNOT gate errors between adjacent qubits of the NISQ device. The matrix transformation-based optimization approach is to synthesize the transposed matrix, the flip matrix, and its transposed matrix according to the characteristics of the Boolean Matrix. The experimental results support the effectiveness of our strategy in enhancing circuit fidelity. Compared with existing methods, our solution can increase the success rate by 382.86% and reduce the number of gates by 58.3% on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from https://github.com/M-qiangZhu/Physical-constraint-aware-CNOT-quantum-circuit-synthesis-and-optimization

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  3. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  4. Zhu, G.: Hardware-aware approach for fault-tolerant quantum computation (2021)

  5. Hsu, J.: Intels 49-qubit chip shoots for quantum supremacy (2018)

  6. Kelly, J.: A preview of bristlecone, google’s new quantum processor. Google Res. Blog 5 (2018)

  7. Reagor, M., Osborn, C.B., Tezak, N., Staley, A., Prawiroatmodjo, G., Scheer, M., Alidoust, N., Sete, E.A., Didier, N., da Silva, M.P., et al.: Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv. 4(2), eaao3603 (2018)

    Article  ADS  Google Scholar 

  8. Versluis, R., Poletto, S., Khammassi, N., Tarasinski, B., Haider, N., Michalak, D.J., Bruno, A., Bertels, K., DiCarlo, L.: Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8(3), 034021 (2017)

    Article  ADS  Google Scholar 

  9. Ballance, C.J., Harty, T.P., Linke, N.M., Sepiol, M.A., Lucas, D.M.: High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117(6), 060504 (2016)

    Article  ADS  Google Scholar 

  10. Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., et al.: High-fidelity universal gate set for be 9+ ion qubits. Phys. Rev. Lett. 117(6), 060505 (2016)

    Article  ADS  Google Scholar 

  11. Ding, J., Yamashita, S.: Exact synthesis of nearest neighbor compliant quantum circuits in 2-d architecture and its application to large-scale circuits. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39(5), 1045–1058 (2019)

    Article  Google Scholar 

  12. Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to ibm qx architectures using the minimal number of swap and h operations. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2019)

  13. Zhu, P., Cheng, X., Guan, Z.: An exact qubit allocation approach for nisq architectures. Quantum Inf. Process. 19(11), 1–21 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum circuits to the ibm qx architectures. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 38(7), 1226–1236 (2018)

    Article  Google Scholar 

  15. Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for nisq-era quantum devices. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 1001–1014 (2019)

  16. Zhou, X., Li, S., Feng, Y.: Quantum circuit transformation based on simulated annealing and heuristic search. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39(12), 4683–4694 (2020)

    Article  Google Scholar 

  17. Niemann, P., de Almeida, A.A., Dueck, G., Drechsler, R.: Design space exploration in the mapping of reversible circuits to ibm quantum computers. In: 2020 23rd Euromicro Conference on Digital System Design (DSD), pp. 401–407. IEEE (2020)

  18. Bhattacharjee, A., Bandyopadhyay, C., Mukherjee, A., Wille, R., Drechsler, R., Rahaman, H.: Efficient implementation of nearest neighbor quantum circuits using clustering with genetic algorithm. In: 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL), pp. 40–45. IEEE (2020)

  19. Zhu, P., Guan, Z., Cheng, X.: A dynamic look-ahead heuristic for the qubit mapping problem of nisq computers. IEEE Trans. Comput. Aided Des. Integr. Circu. Syst. 39(12), 4721–4735 (2020)

    Article  Google Scholar 

  20. Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Inf. Comput. 8(3), 282–294 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Schaeffer, B., Perkowski, M.: Linear reversible circuit synthesis in the linear nearest-neighbor model. In: 2012 IEEE 42nd International Symposium on Multiple-Valued Logic, pp. 157–160. IEEE (2012)

  22. Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for nisq architectures. Quantum Sci. Technol. 5(2), 025010 (2020)

    Article  ADS  Google Scholar 

  23. Kissinger, A., de Griend, A.M.: Cnot circuit extraction for topologically-constrained quantum memories. arXiv preprint arXiv:1904.00633 (2019)

  24. Niu, S., Suau, A., Staffelbach, G., Todri-Sanial, A.: A hardware-aware heuristic for the qubit mapping problem in the nisq era. IEEE Trans. Quantum Eng. 1, 1–14 (2020)

    Article  Google Scholar 

  25. Zhu, M., Cheng, X. https://github.com/m-qiangzhu/physical-constraint-aware-cnot-quantum-circuit-synthesis-and-optimization (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyun Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant 62072259, in part by Jiangsu Province Natural Science Foundation of China under Grant BK20151274, in part by Suqian Science and Technology Foundation under Grant S201819.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Cheng, X., Zhu, P. et al. Physical constraint-aware CNOT quantum circuit synthesis and optimization. Quantum Inf Process 22, 10 (2023). https://doi.org/10.1007/s11128-022-03716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03716-1

Keywords

Navigation