Abstract
We investigate the behavior of tripartite entanglement and entropy disorder in three non-interacting qubits that are first prepared in a mixture state containing Greenberger–Horne–Zeilinger (GHZ) and Werner (W) states, and then exposed to classical transmitting channels influenced by fractional Gaussian (FG) noise. To investigate the coupling of the three non-interacting qubits, single, double, and triple local channel configurations are used. We address the question of how GHZ and W states can have different capacities to protect entanglement while avoiding entropy disorder in different qubit-channel couplings. Using entanglement witness and linear entropy functions, we find that GHZ state is more resourceful when coupled with a single channel, whereas W state remains more resourceful when exposed to more than one local channel. The statistical ensemble states that are initially designed, as well as the designs of the medium to which they are exposed, have a strong influence on the initial state entanglement retention in quantum systems. Moreover, we realize that FG noise is more harmful than frequently found local noises, resulting in faster entropy disorder generation and, as a result, the destruction of tripartite quantum correlations. However, the tripartite correlations can be preserved by increasing the FG noise parameter known as the Hurst exponent.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in this paper.
References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)
Gruska, J.: Quantum computing challenges. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited and Beyond, vol. 529. Springer, Berlin (2001)
Ge, R.C., Gong, M., Li, C.F., Xu, J.S., Guo, G.C.: Quantum correlation and classical correlation dynamics in the spin-boson model. Phys. Rev. A 81, 064103 (2010)
Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807 (1935)
Einstien, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise. Quantum Inf. Process. 17, 76 (2018)
Bennett, C.H., Di Vincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)
Terhal, B.M.: Quantum dense coding. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms. Springer, New York (2016)
Takano, T., Fuyama, M., Namiki, R., Takahashi, Y.: Continuous-variable quantum swapping gate between light and atoms. Phys. Rev. A. 78, 010307 (2008)
Scarani, V., Iblisdir, S., Gisin, N., Acín, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005)
Richter, T., Vogel, W.: Nonclassical characteristic functions for highly sensitive measurements. Phy. Rev. A 76, 053835 (2012)
Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information; Basic Tools and Special Topics. World Scientific Publishing, Singapore (2007)
Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)
Xu, X.X., Hu, M.L.: Maximal steered coherence and its conversion to entanglement in multiple bosonic reservoirs. Ann. Phys. (Berlin) 534, 2100412 (2022)
Hu, M.L., Zhang, Y.H., Fan, H.: Nonlocal advantage of quantum coherence in a dephasing channel with memory. Chin. Phys. B 30, 030308 (2021)
Hu, M.L., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)
Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)
Hu, M.L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 95, 052106 (2017)
Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China Phys. Mech. Astron. 63, 230322 (2020)
Benabdallah, F., Haddadi, S., Arian Zad, H., Pourkarimi, M.R., Daoud, M., Ananikian, N.: Pairwise quantum criteria and teleportation in a spin square complex. Sci. Rep. 12, 6406 (2022)
Haddadi, S., Pourkarimi, M.R., Haseli, S.: Relationship between quantum coherence and uncertainty bound in an arbitrary two-qubit X-state. Opt. Quantum Electron. 53, 529 (2021)
Zhao, F., Wang, D., Ye, L.: Relationship between entanglement and coherence in some two-qubit states. Int. J. Theor. Phys. 61, 10 (2022)
Mohamed, A.B.A., Khedr, A.N., Haddadi, S., Rahman, A.U., Tammam, M., Pourkarimi, M.R.: Intrinsic decoherence effects on nonclassical correlations in a symmetric spin-orbit model. Results Phys. 39, 105693 (2022)
Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931 (2011)
Peters, N.A., Toliver, P., Chapuran, T.E., Runser, R.J., McNown, S.R., Peterson, C.G., Rosenberg, D., Dallmann, N., Hughes, R.J., McCabe, K.P., Nordholt, J.E., Tyagi, K.T.: Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments. New J. Phys. 11, 045012 (2009)
Pirandola, S., Lupo, C., Giovannetti, V., Mancini, S., Braunstein, S.L.: Quantum reading capacity. New J. Phys. 13, 113012 (2011)
Wengerowsky, S., Joshi, S.K., Steinlechner, F., Hübel, H., Ursin, R.: An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225 (2018)
Xu, S., et al.: Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater. 3, 021007 (2016)
Fei, F., Zhang, S., Zhang, M., Shah, S.A., Song, F., Wang, X., Wang, B.: The material efforts for quantized Hall devices based on topological insulators. Adv. Mater. 32, 1904593 (2020)
Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quantum Inf. 10, 1241005 (2012)
Rahman, A.U., Haddadi, S., Pourkarimi, M.R.: Tripartite quantum correlations under power-law and random telegraph noises: collective effects of Markovian and non-Markovian classical fields. Ann. Phys. (Berlin) 534, 2100584 (2022)
Rahman, A.U., Ji, Z.X., Zhang, H.G.: Demonstration of entanglement and coherence in GHZ-like state when exposed to classical environments with power-law noise. Eur. Phys. J. Plus 137, 440 (2022)
Rahman, A.U., Javed, M., Ji, Z., Ullah, A.: Probing multipartite entanglement, coherence and quantum information preservation under classical Ornstein–Uhlenbeck noise. J. Phys. A Math. Theor. 55, 025305 (2021)
Rahman, A.U., Noman, M., Javed, M., Ullah, A.: Dynamics of bipartite quantum correlations and coherence in classical environments described by pure and mixed Gaussian noises. Eur. Phys. J. Plus 136, 846 (2021)
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422 (1968)
Zunino, L., Zanin, M., Tabak, B.M., Pérez, D.G., Rosso, O.A.: Forbidden patterns, permutation entropy and stock market inefficiency. Physica A 388, 2854 (2009)
Bae, J., Chruściński, D., Hiesmayr, B.C.: Mirrored entanglement witnesses. npj Quantum Inf. 6, 15 (2020)
Bourennane, M., Eibl, M., Kurtsiefer, C., Gaertner, S., Weinfurter, H., Gühne, O., Sanpera, A.: Experimental detection of multipartite entanglement using witness operators. Phys. Rev. Lett. 92, 087902 (2004)
Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87, 040401 (2001)
Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)
Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)
Acín, A., Andrianov, A., Costa, L., Jané, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)
Ming, F., Song, X.K., Ling, J., Ye, L., Wang, D.: Quantification of quantumness in neutrino oscillations. Eur. Phys. J. C 80, 275 (2020)
Li, L.J., Ming, F., Song, X.K., Ye, L., Wang, D.: Characterizing entanglement and measurement’s uncertainty in neutrino oscillations. Eur. Phys. J. C 81, 728 (2021)
Ming, F., Wang, D., Li, L.J., Fan, X.G., Song, X.K., Ye, L., Chen, J.L.: Tradeoff relations in quantum resource theory. Adv. Quantum Technol. 4, 2100036 (2021)
Yang, Y.Y., Sun, W.Y., Shi, W.N., Ming, F., Wang, D., Ye, L.: Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys. 14, 31601 (2019)
Haddadi, S., Hu, M.L., Khedif, Y., Dolatkhah, H., Pourkarimi, M.R., Daoud, M.: Measurement uncertainty and dense coding in a two-qubit system: combined effects of bosonic reservoir and dipole–dipole interaction. Results Phys. 32, 105041 (2022)
Hashem, M., Mohamed, A.B.A., Haddadi, S., Khedif, Y., Pourkarimi, M.R., Daoud, M.: Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Appl. Phys. B 128, 87 (2022)
Rahman, A.U., Abd-Rabbou, M.Y., Zangi, S., Javed, M.: Entropic uncertainty and quantum correlations dynamics in a system of two qutrits exposed to local noisy channels. Phys. Scr. 97, 105101 (2022)
Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)
Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)
Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phy. Rev. Lett. 107, 270501 (2011)
Islam, R., Preiss, P.M., Tai, M.E., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77 (2015)
Rahman, A.U., Noman, M., Javed, M., Luo, M.X., Ullah, A.: Quantum correlations of tripartite entangled states under Gaussian noise. Quantum Inf. Process. 20, 290 (2021)
Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)
Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131, 380 (2016)
Sun, J., Sheng, H.: A hybrid detrending method for fractional Gaussian noise. Physica A 390, 2995 (2011)
Erramilli, A., Narayan, O., Willinger, W.: Experimental queueing analysis with long-range dependent packet traffic. IEEE/ACM Trans. Netw. 4, 209 (1996)
Kaplan, L.M., Kuo, C.C.: Extending self-similarity for fractional Brownian motion. IEEE Trans. Signal Process. 42, 3526 (1994)
Zunino, L., Pérez, D.G., Kowalski, A., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A.: Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy. Physica A 387, 6057 (2008)
Taqqu, M.S., Teverovsky, V.: On estimating the intensity of long-range dependence in finite and infinite variance time series. In: A Practical Guide to Heavy Tails: Statistical Techniques and Applications, vol. 177 (1998)
Mollaei, S., Darooneh, A.H., Karimi, S.: Multi-scale entropy analysis and Hurst exponent. Physica A 528, 121292 (2019)
Gamble, J.K., Lindner, J.F.: Demystifying decoherence and the master equation of quantum Brownian motion. Am. J. Phys. 77, 244 (2009)
Wanqing, S., Chen, X., Cattani, C., Zio, E.: Multifractional Brownian motion and quantum-behaved partial swarm optimization for bearing degradation forecasting. Complexity 2020, 8543131 (2020)
Maniscalco, S., Piilo, J., Intravaia, F., Petruccione, F., Messina, A.: Simulating quantum Brownian motion with single trapped ions. Phys. Rev. A 69, 052101 (2004)
Bauer, M., Bernard, D., Tilloy, A.: The open quantum Brownian motions. J. Stat. Mech. 2014, P09001 (2014)
Benedetti, C., Paris, M.G.A.: Characterization of classical Gaussian processes using quantum probes. Phys. Lett. A 378, 2495 (2014)
Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quantum Inf. 12, 1560003 (2014)
Rossi, M.A.C., Paris, M.G.A.: Entangled quantum probes for dynamical environmental noise. Phys. Rev. A 92, 010302(R) (2015)
Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B 31, 1750046 (2017)
Haddadi, S., Pourkarimi, M.R., Wang, D.: Tripartite entropic uncertainty in an open system under classical environmental noise. J. Opt. Soc. Am. B 38, 2620 (2021)
Benabdallah, F., Rahman, A.U., Haddadi, S., Daoud, M.: Long-time protection of thermal correlations in a hybrid-spin system under random telegraph noise. Phys. Rev. E 106, 034122 (2022)
Cai, X.: Quantum dephasing induced by non-Markovian random telegraph noise. Sci. Rep. 10, 88 (2020)
Zhou, D., Lang, A., Joynt, R.: Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf. Process. 9, 727 (2010)
Gorman, D.J., Young, K.C., Whaley, K.B.: Overcoming dephasing noise with robust optimal control. Phys. Rev. A 86, 012317 (2012)
Li, J.Q., Liang, J.Q.: Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)
Benabdallah, F., Daoud, M.: Dynamics of quantum discord based on linear entropy and negativity of qutrit-qubit system under classical dephasing environments. Eur. Phys. J. D 75, 3 (2021)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
A Appendix
A Appendix
Here, we present the explicit form of statistical ensembles of final density matrices of SQC, DQC and TQC configurations. For three non-interacting qubits initially prepared in the state \(\rho (0)\) given in Eq. (3) when considered in SQC configuration under FG noise, Eq. (11), the corresponding density matrix takes the form
where
The final density matrix for the case of DQC configuration driven by FG noise, Eq. (12), has the following form
where
Finally, using Eq. (13), the density matrix for TQC configuration of three qubits under FG noise can be written as
where
Now, we provide the analytical results for entanglement witness and linear entropy for the dynamics of the physical model described in the above density matrices. For three non-interacting qubits initially created in a mixture state and assumed in SQC, DQC, and TQC couplings given in Eqs. (A.1), (A.2), and (A.3) under the impact of FG noise, we use Eqs. (1) and (2) to analyze entanglement witness and linear entropy. The analytical expressions are given as
For the DQC configurations, the entanglement witness and linear entropy results are
where
Similarly, for the TQC configurations, the analytical expressions of entanglement witness and linear entropy are as follows
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rahman, A.U., Haddadi, S., Javed, M. et al. Entanglement witness and linear entropy in an open system influenced by FG noise. Quantum Inf Process 21, 368 (2022). https://doi.org/10.1007/s11128-022-03720-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03720-5