Abstract
We investigate the use of the cross-Kerr nonlinearity to realize strong photon blockade in a weakly driven, three-mode system. The results show that the conventional photon blockade induced by the strong nonlinearities and the unconventional photon blockade induced by quantum interference effects exist in our system. In particular, we find that the CPB only appears in the strong cross-Kerr coupling regime, while the UPB can occur in the weak or strong cross-Kerr coupling regime. For the strong cross-Kerr nonlinearities, both CPB and UPB exhibit strong antibunching features. Furthermore, the switch between CPB and UPB can be achieved with different detunings. Our work paves the way to study two different physical mechanisms behind CPB and UPB.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in this published article (and its supplementary information files).
References
Tian, L., Carmichael, H.J.: Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992)
Leoński, W., Tanaś, R.: Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 49, R20 (1994)
Miranowicz, A., Leoński, W., Dyrting, S., Tanaś, R.: Quantum state engineering in finite-dimensional Hilbert space. Acta Phys. Slovaca 46, 451 (1996)
Imamoğlu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)
Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)
Ridolfo, A., Leib, M., Savasta, S., Hartmann, M.J.: Photon blockade in the ultrastrong coupling regime. Phys. Rev. Lett. 109, 193602 (2012)
Faraon, A., Fushman, I., Englund, D., Stoltz, N., Petroff, P., Vuc̆ković, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)
Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Türeci, H.E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)
Lang, C., Bozyigit, D., Eichler, C., Steffen, L., Fink, J.M., Abdumalikov, A.A., Baur, M., Filipp, S., da Silva, M.P., Blais, A., Wallraff, A.: Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)
Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)
Nunnenkamp, A., Børkje, K., Girvin, S.M.: Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011)
Miranowicz, A., Bajer, J., Paprzycka, M., Liu, Y.X., Zagoskin, A.M., Nori, F.: State-dependent photon blockade via quantum-reservoir engineering. Phys. Rev. A 90, 033831 (2014)
Majumdar, A., Gerace, D.: Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity. Phys. Rev. B 87, 235319 (2013)
Heikkilä, T.T., Massel, F., Tuorila, J., Khan, R., Sillanpää, M.A.: Enhancing optomechanical coupling via the Josephson effect. Phys. Rev. Lett. 112, 203603 (2014)
Pirkkalainen, J.M., Cho, S.U., Massel, F., Tuorila, J., Heikkilä, T.T., Hakonen, P.J., Sillanpää, M.A.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6(1), 6981 (2015)
Zou, F., Fan, L.B., Huang, J.F., Liao, J.Q.: Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A 99, 043837 (2019)
Khan, R., Massel, F., Heikkilä, T.T.: Cross-Kerr nonlinearity in optomechanical systems. Phys. Rev. A 91, 043822 (2015)
Sarala, R., Massel, F.: Cross-Kerr nonlinearity: a stability analysis. Nanoscale Syst. 4, 18 (2015)
Xiong, W., Jin, D.Y., Qiu, Y.Y., Lam, C.H., You, J.Q.: Cross-Kerr effect on an optomechanical system. Phys. Rev. A 93, 023844 (2016)
Chakraborty, S., Sarma, A.K.: Enhancing quantum correlations in an optomechanical system via cross-Kerr nonlinearity. J. Opt. Soc. Am. B 34(7), 1503–1510 (2017)
Liao, J.Q., Huang, J.F., Tian, L., Kuang, L.M., Sun, C.P.: Generalized ultrastrong optomechanical-like coupling. Phys. Rev. A 101, 063802 (2020)
Yin, T.S., Lü, X.Y., Wan, L.L., Bin, S.W., Wu, Y.: Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving. Opt. Lett. 43(9), 2050–2053 (2018)
Feng, L.J., You, Y., Dong, H.X., Wang, F.C., Gong, S.Q.: Enhancing cross-Kerr coupling via mechanical parametric amplification. Opt. Express 29(18), 28835 (2021)
Hu, Y., Ge, G.Q., Chen, S., Yang, X.F., Chen, Y.L.: Cross-Kerr-effect induced by coupled Josephson qubits in circuit quantum electrodynamics. Phys. Rev. A 84, 012329 (2011)
Leoński, W., Miranowicz, A.: Kerr nonlinear coupler and entanglement. J. Opt. B 6, S37–S42 (2004)
Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010)
Bamba, M., Imamoğlu, A., Carusotto, I., Ciuti, C.: Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)
Xu, X.W., Li, Y.: Tunable photon statistics in weakly nonlinear photonic molecules. Phys. Rev. A 90, 043822 (2014)
Gerace, D., Savona, V.: Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A 89, 031803(R) (2014)
Zhou, Y.H., Shen, H.Z., Yi, X.X.: Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A 92, 023838 (2015)
Sarma, B., Sarma, A.K.: Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity. J. Phys. B At. Mol. Opt. Phys. 51, 075505 (2018)
Sarma, B., Sarma, A.K.: Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A 96, 053827 (2017)
Lin, H.Y., Yang, H., Wang, X.Q., Zhou, Y.H., Yao, Z.H.: Realization of the unconventional photon blockade based on a three-wave mixing system. Opt. Express 29, 8235 (2021)
Kyriienko, O., Liew, T.C.H.: Triggered single-photon emitters based on stimulated parametric scattering in weakly nonlinear systems. Phys. Rev. A 90, 063805 (2014)
Xu, X.W., Li, Y.J.: Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. B At. Mol. Opt. Phys. 46, 035502 (2013)
Sarma, B., Sarma, A.K.: Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A 98, 013826 (2018)
Wang, Y.M., Zhang, G.Q., You, W.L.: Photon blockade with cross-Kerr nonlinearity in superconducting circuits. Laser Phys. Lett. 15, 105201 (2018)
Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabelli, J., Estève, J.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)
Snijders, H.J., Frey, J.A., Norman, J., Flayac, H., Savona, V., Gossard, A.C., Bowers, J.E., van Exter, M.P., Bouwmeester, D., Löffler, W.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)
Sarma, B., Sarma, A.K.: Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction. Sci. Rep. 8, 14583 (2018)
Shi, H.Q., Xu, X.W., Liu, N.H.: Phonon blockade in a nanomechanical resonator quadratically coupled to a two-level system. Sci. Rep. 9, 8754 (2019)
Liang, X.Y., Duan, Z.L., Guo, Q., Liu, C.J., Guan, S.G., Ren, Y.: Antibunching effect of photons in a two-level emitter-cavity system. Phys. Rev. A 100, 063834 (2019)
Liang, X.Y., Duan, Z.L., Guo, Q., Guan, S.G., Xie, M., Liu, C.J.: Photon blockade in a bimode nonlinear nanocavity embedded with a quantum dot. Phys. Rev. A 102, 053713 (2020)
Zubizarreta Casalengua, E., López Carreño, J.C., Laussy, F.P., Valle, E.D.: Conventional and unconventional photon statistics. Laser Photonic Rev. 14, 1900279 (2020)
You, J.B., Xiong, X., Bai, P., Zhou, Z.K., Ma, R.M., Yang, W.L., Lu, Y.K., Xiao, Y.F., Png, C.E., Garcia-Vidal, F.J., Qiu, C.W., Wu, L.: Reconfigurable photon sources based on quantum Plexcitonic systems. Nano Lett. 20, 4645 (2020)
Wang, D.Y., Bai, C.H., Liu, S.T., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22, 093006 (2020)
Qian, Y.B., Lai, D.G., Chen, M.R., Hou, B.P.: Nonreciprocal photon transmission with quantum noise reduction via cross-Kerr nonlinearity. Phys. Rev. A 104, 033705 (2021)
Ruesink, F., Miri, M.A., Alù, A., Verhagen, E.: Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016)
Bernier, N.R., Tóth, L.D., Koottandavida, A., Ioannou, M.A., Malz, D., Nunnenkamp, A., Feofanov, A.K., Kippenberg, T.J.: Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604 (2017)
Huang, R., Miranowicz, A., Liao, J.Q., Nori, F., Jing, H.: Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2018)
Wang, D.Y., Bai, C.H., Han, X., Liu, S.T., Zhang, S., Wang, H.F.: Enhanced photon blockade in an optomechanical system with parametric amplification. Opt. Lett. 45, 2604 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (12034007, 12204310), Shanghai Sailing Program (21YF1446900), and Research start-up project of Shanghai Institute of Technology (YJ2021-65).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Feng, LJ., Gong, SQ. Conventional and unconventional photon blockade with cross-Kerr nonlinearity. Quantum Inf Process 21, 371 (2022). https://doi.org/10.1007/s11128-022-03724-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03724-1