Skip to main content
Log in

Conventional and unconventional photon blockade with cross-Kerr nonlinearity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the use of the cross-Kerr nonlinearity to realize strong photon blockade in a weakly driven, three-mode system. The results show that the conventional photon blockade induced by the strong nonlinearities and the unconventional photon blockade induced by quantum interference effects exist in our system. In particular, we find that the CPB only appears in the strong cross-Kerr coupling regime, while the UPB can occur in the weak or strong cross-Kerr coupling regime. For the strong cross-Kerr nonlinearities, both CPB and UPB exhibit strong antibunching features. Furthermore, the switch between CPB and UPB can be achieved with different detunings. Our work paves the way to study two different physical mechanisms behind CPB and UPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Tian, L., Carmichael, H.J.: Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992)

    Article  ADS  Google Scholar 

  2. Leoński, W., Tanaś, R.: Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 49, R20 (1994)

    Article  ADS  Google Scholar 

  3. Miranowicz, A., Leoński, W., Dyrting, S., Tanaś, R.: Quantum state engineering in finite-dimensional Hilbert space. Acta Phys. Slovaca 46, 451 (1996)

    Google Scholar 

  4. Imamoğlu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  5. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)

    Article  ADS  Google Scholar 

  6. Ridolfo, A., Leib, M., Savasta, S., Hartmann, M.J.: Photon blockade in the ultrastrong coupling regime. Phys. Rev. Lett. 109, 193602 (2012)

    Article  ADS  Google Scholar 

  7. Faraon, A., Fushman, I., Englund, D., Stoltz, N., Petroff, P., Vuc̆ković, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)

    Article  Google Scholar 

  8. Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Türeci, H.E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)

    Article  ADS  Google Scholar 

  9. Lang, C., Bozyigit, D., Eichler, C., Steffen, L., Fink, J.M., Abdumalikov, A.A., Baur, M., Filipp, S., da Silva, M.P., Blais, A., Wallraff, A.: Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)

    Article  ADS  Google Scholar 

  10. Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  Google Scholar 

  11. Nunnenkamp, A., Børkje, K., Girvin, S.M.: Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011)

    Article  ADS  Google Scholar 

  12. Miranowicz, A., Bajer, J., Paprzycka, M., Liu, Y.X., Zagoskin, A.M., Nori, F.: State-dependent photon blockade via quantum-reservoir engineering. Phys. Rev. A 90, 033831 (2014)

    Article  ADS  Google Scholar 

  13. Majumdar, A., Gerace, D.: Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity. Phys. Rev. B 87, 235319 (2013)

    Article  ADS  Google Scholar 

  14. Heikkilä, T.T., Massel, F., Tuorila, J., Khan, R., Sillanpää, M.A.: Enhancing optomechanical coupling via the Josephson effect. Phys. Rev. Lett. 112, 203603 (2014)

    Article  ADS  Google Scholar 

  15. Pirkkalainen, J.M., Cho, S.U., Massel, F., Tuorila, J., Heikkilä, T.T., Hakonen, P.J., Sillanpää, M.A.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6(1), 6981 (2015)

    Article  ADS  Google Scholar 

  16. Zou, F., Fan, L.B., Huang, J.F., Liao, J.Q.: Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A 99, 043837 (2019)

    Article  ADS  Google Scholar 

  17. Khan, R., Massel, F., Heikkilä, T.T.: Cross-Kerr nonlinearity in optomechanical systems. Phys. Rev. A 91, 043822 (2015)

    Article  ADS  Google Scholar 

  18. Sarala, R., Massel, F.: Cross-Kerr nonlinearity: a stability analysis. Nanoscale Syst. 4, 18 (2015)

    MathSciNet  Google Scholar 

  19. Xiong, W., Jin, D.Y., Qiu, Y.Y., Lam, C.H., You, J.Q.: Cross-Kerr effect on an optomechanical system. Phys. Rev. A 93, 023844 (2016)

    Article  ADS  Google Scholar 

  20. Chakraborty, S., Sarma, A.K.: Enhancing quantum correlations in an optomechanical system via cross-Kerr nonlinearity. J. Opt. Soc. Am. B 34(7), 1503–1510 (2017)

    Article  ADS  Google Scholar 

  21. Liao, J.Q., Huang, J.F., Tian, L., Kuang, L.M., Sun, C.P.: Generalized ultrastrong optomechanical-like coupling. Phys. Rev. A 101, 063802 (2020)

    Article  ADS  Google Scholar 

  22. Yin, T.S., Lü, X.Y., Wan, L.L., Bin, S.W., Wu, Y.: Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving. Opt. Lett. 43(9), 2050–2053 (2018)

    Article  ADS  Google Scholar 

  23. Feng, L.J., You, Y., Dong, H.X., Wang, F.C., Gong, S.Q.: Enhancing cross-Kerr coupling via mechanical parametric amplification. Opt. Express 29(18), 28835 (2021)

    Article  ADS  Google Scholar 

  24. Hu, Y., Ge, G.Q., Chen, S., Yang, X.F., Chen, Y.L.: Cross-Kerr-effect induced by coupled Josephson qubits in circuit quantum electrodynamics. Phys. Rev. A 84, 012329 (2011)

    Article  ADS  Google Scholar 

  25. Leoński, W., Miranowicz, A.: Kerr nonlinear coupler and entanglement. J. Opt. B 6, S37–S42 (2004)

    Article  ADS  Google Scholar 

  26. Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010)

    Article  ADS  Google Scholar 

  27. Bamba, M., Imamoğlu, A., Carusotto, I., Ciuti, C.: Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)

    Article  ADS  Google Scholar 

  28. Xu, X.W., Li, Y.: Tunable photon statistics in weakly nonlinear photonic molecules. Phys. Rev. A 90, 043822 (2014)

    Article  ADS  Google Scholar 

  29. Gerace, D., Savona, V.: Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A 89, 031803(R) (2014)

    Article  ADS  Google Scholar 

  30. Zhou, Y.H., Shen, H.Z., Yi, X.X.: Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A 92, 023838 (2015)

    Article  ADS  Google Scholar 

  31. Sarma, B., Sarma, A.K.: Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity. J. Phys. B At. Mol. Opt. Phys. 51, 075505 (2018)

    Article  ADS  Google Scholar 

  32. Sarma, B., Sarma, A.K.: Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A 96, 053827 (2017)

    Article  ADS  Google Scholar 

  33. Lin, H.Y., Yang, H., Wang, X.Q., Zhou, Y.H., Yao, Z.H.: Realization of the unconventional photon blockade based on a three-wave mixing system. Opt. Express 29, 8235 (2021)

    Article  ADS  Google Scholar 

  34. Kyriienko, O., Liew, T.C.H.: Triggered single-photon emitters based on stimulated parametric scattering in weakly nonlinear systems. Phys. Rev. A 90, 063805 (2014)

    Article  ADS  Google Scholar 

  35. Xu, X.W., Li, Y.J.: Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. B At. Mol. Opt. Phys. 46, 035502 (2013)

    Article  ADS  Google Scholar 

  36. Sarma, B., Sarma, A.K.: Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A 98, 013826 (2018)

    Article  ADS  Google Scholar 

  37. Wang, Y.M., Zhang, G.Q., You, W.L.: Photon blockade with cross-Kerr nonlinearity in superconducting circuits. Laser Phys. Lett. 15, 105201 (2018)

    Article  ADS  Google Scholar 

  38. Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabelli, J., Estève, J.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)

    Article  ADS  Google Scholar 

  39. Snijders, H.J., Frey, J.A., Norman, J., Flayac, H., Savona, V., Gossard, A.C., Bowers, J.E., van Exter, M.P., Bouwmeester, D., Löffler, W.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)

    Article  ADS  Google Scholar 

  40. Sarma, B., Sarma, A.K.: Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction. Sci. Rep. 8, 14583 (2018)

    Article  ADS  Google Scholar 

  41. Shi, H.Q., Xu, X.W., Liu, N.H.: Phonon blockade in a nanomechanical resonator quadratically coupled to a two-level system. Sci. Rep. 9, 8754 (2019)

    Article  ADS  Google Scholar 

  42. Liang, X.Y., Duan, Z.L., Guo, Q., Liu, C.J., Guan, S.G., Ren, Y.: Antibunching effect of photons in a two-level emitter-cavity system. Phys. Rev. A 100, 063834 (2019)

    Article  ADS  Google Scholar 

  43. Liang, X.Y., Duan, Z.L., Guo, Q., Guan, S.G., Xie, M., Liu, C.J.: Photon blockade in a bimode nonlinear nanocavity embedded with a quantum dot. Phys. Rev. A 102, 053713 (2020)

    Article  ADS  Google Scholar 

  44. Zubizarreta Casalengua, E., López Carreño, J.C., Laussy, F.P., Valle, E.D.: Conventional and unconventional photon statistics. Laser Photonic Rev. 14, 1900279 (2020)

    Article  ADS  Google Scholar 

  45. You, J.B., Xiong, X., Bai, P., Zhou, Z.K., Ma, R.M., Yang, W.L., Lu, Y.K., Xiao, Y.F., Png, C.E., Garcia-Vidal, F.J., Qiu, C.W., Wu, L.: Reconfigurable photon sources based on quantum Plexcitonic systems. Nano Lett. 20, 4645 (2020)

    Article  ADS  Google Scholar 

  46. Wang, D.Y., Bai, C.H., Liu, S.T., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22, 093006 (2020)

    Article  ADS  Google Scholar 

  47. Qian, Y.B., Lai, D.G., Chen, M.R., Hou, B.P.: Nonreciprocal photon transmission with quantum noise reduction via cross-Kerr nonlinearity. Phys. Rev. A 104, 033705 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  48. Ruesink, F., Miri, M.A., Alù, A., Verhagen, E.: Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016)

    Article  ADS  Google Scholar 

  49. Bernier, N.R., Tóth, L.D., Koottandavida, A., Ioannou, M.A., Malz, D., Nunnenkamp, A., Feofanov, A.K., Kippenberg, T.J.: Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604 (2017)

    Article  ADS  Google Scholar 

  50. Huang, R., Miranowicz, A., Liao, J.Q., Nori, F., Jing, H.: Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2018)

    Article  ADS  Google Scholar 

  51. Wang, D.Y., Bai, C.H., Han, X., Liu, S.T., Zhang, S., Wang, H.F.: Enhanced photon blockade in an optomechanical system with parametric amplification. Opt. Lett. 45, 2604 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12034007, 12204310), Shanghai Sailing Program (21YF1446900), and Research start-up project of Shanghai Institute of Technology (YJ2021-65).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Juan Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, LJ., Gong, SQ. Conventional and unconventional photon blockade with cross-Kerr nonlinearity. Quantum Inf Process 21, 371 (2022). https://doi.org/10.1007/s11128-022-03724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03724-1

Keywords

Navigation