Abstract
We propose an alternative scheme for achieving magnon–magnon entanglement and one-way Einstein–Podolsky–Rosen (EPR) steering via the cavity dissipation processes, where two cascaded cavities are respectively coupled to two separated magnon modes of the yttrium iron garnet (YIG) spheres. Based on the quantum theory, the reduced master equation of magnon modes is derived by adiabatically eliminating the cavity variables. The results show that the entanglement and one-way EPR steering of two distant magnons could be obtained and controlled by adequately selecting the physical parameters such as magneto-optical coupling strength, the coupling efficiency of cascaded cavities, and magnon dissipation rate. The remarkable feature of our scheme is that the generated bipartite correlations are insensitive to the dynamical parameter fluctuations. Furthermore, the simplified operation and actual parameters make the scheme more feasible, which may provide a new platform for the study of the macroscopic quantum phenomenon and quantum information processing.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85(11), 2392–2395 (2000). https://doi.org/10.1103/PhysRevLett.85.2392
Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016). https://doi.org/10.1103/PhysRevLett.117.210502
Häffner, H., Hänsel, W., Roos, C., Benhelm, J., Chek-al-Kar, D., Chwalla, M., Körber, T., Rapol, U., Riebe, M., Schmidt, P., et al.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646 (2005). https://doi.org/10.1038/nature04279
Riste, D., Dukalski, M., Watson, C., De Lange, G., Tiggelman, M., Blanter, Y.M., Lehnert, K.W., Schouten, R., DiCarlo, L.: Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature 502(7471), 350–354 (2013). https://doi.org/10.1038/nature12513
Laurat, J., Choi, K., Deng, H., Chou, C., Kimble, H.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99(18), 180504 (2007). https://doi.org/10.1103/PhysRevLett.99.180504
Schrödinger, E.: Discussion of probability relations between separated systems. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563. Cambridge University Press, Cambridge (1935). https://doi.org/10.1017/S0305004100013554
Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98(14), 140402 (2007). https://doi.org/10.1103/PhysRevLett.98.140402
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935). https://doi.org/10.1103/PhysRev.47.777
Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: Quantification of gaussian quantum steering. Phys. Rev. Lett. 114(6), 060403 (2015). https://doi.org/10.1103/PhysRevLett.114.060403
Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A., Nori, F.: Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks. Phys. Rev. A 93(6), 062345 (2016). https://doi.org/10.1103/PhysRevA.93.062345
Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pp. 449–458. IEEE (2002). https://doi.org/10.1109/SFCS.2002.1181969
Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114(6), 060404 (2015). https://doi.org/10.1103/PhysRevLett.114.060404
Sun, K., Ye, X.-J., Xiao, Y., Xu, X.-Y., Wu, Y.-C., Xu, J.-S., Chen, J.-L., Li, C.-F., Guo, G.-C.: Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination. npj Quantum Inf. 4(1), 1–7 (2018). https://doi.org/10.1038/s41534-018-0067-1
Zheng, S.-S., Sun, F.-X., Yuan, H.-Y., Ficek, Z., Gong, Q.-H., He, Q.-Y.: Enhanced entanglement and asymmetric EPR steering between magnons. Sci. China Phys. Mech. Astron. 64(1), 1–9 (2021). https://doi.org/10.1007/s11433-020-1587-5
Wang, M., Xiang, Y., Kang, H., Han, D., Liu, Y., He, Q., Gong, Q., Su, X., Peng, K.: Deterministic distribution of multipartite entanglement and steering in a quantum network by separable states. Phys. Rev. Lett. 125(26), 260506 (2020). https://doi.org/10.1103/PhysRevLett.125.260506
Zhong, W., Zhao, D., Cheng, G., Chen, A.: One-way Einstein–Podolsky–Rosen steering of macroscopic magnons with squeezed light. Opt. Commun. 497, 127138 (2021). https://doi.org/10.1016/j.optcom.2021.127138
Xiang, Y., Su, X., Mišta, L., Jr., Adesso, G., He, Q.: Multipartite Einstein–Podolsky–Rosen steering sharing with separable states. Phys. Rev. A 99(1), 010104 (2019). https://doi.org/10.1103/PhysRevA.99.010104
Armstrong, S., Wang, M., Teh, R.Y., Gong, Q., He, Q., Janousek, J., Bachor, H.-A., Reid, M.D., Lam, P.K.: Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks. Nat. Phys. 11(2), 167–172 (2015). https://doi.org/10.1038/nphys3202
Li, C.-M., Chen, Y.-N., Lambert, N., Chiu, C.-Y., Nori, F.: Certifying single-system steering for quantum-information processing. Phys. Rev. A 92(6), 062310 (2015). https://doi.org/10.1103/PhysRevA.92.062310
Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photonics 6(9), 596–599 (2012). https://doi.org/10.1038/nphoton.2012.202
Wollmann, S., Walk, N., Bennet, A.J., Wiseman, H.M., Pryde, G.J.: Observation of genuine one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 116(16), 160403 (2016). https://doi.org/10.1103/PhysRevLett.116.160403
Tischler, N., Ghafari, F., Baker, T.J., Slussarenko, S., Patel, R.B., Weston, M.M., Wollmann, S., Shalm, L.K., Verma, V.B., Nam, S.W., et al.: Conclusive experimental demonstration of one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 121(10), 100401 (2018). https://doi.org/10.1103/PhysRevLett.121.100401
Zeng, Q., Shang, J., Nguyen, H.C., Zhang, X.: Reliable experimental certification of one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Res. 4(1), 013151 (2022). https://doi.org/10.1103/PhysRevResearch.4.013151
Chumak, A.V., Vasyuchka, V.I., Serga, A.A., Hillebrands, B.: Magnon spintronics. Nat. Phys. 11(6), 453–461 (2015). https://doi.org/10.1038/nphys3347
Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K., Nakamura, Y.: Hybrid quantum systems based on magnonics. Appl. Phys. Express 12(7), 070101 (2019). https://doi.org/10.7567/1882-0786/ab248d
Wang, X., Wang, J., Ren, Z., Wen, R., Zou, C.-L., Siviloglou, G.A., Chen, J.: Quantum interference between photons and single quanta of stored atomic coherence. Phys. Rev. Lett. 128(8), 083605 (2022). https://doi.org/10.1103/PhysRevLett.128.083605
Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113(15), 156401 (2014). https://doi.org/10.1103/PhysRevLett.113.156401
Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113(8), 083603 (2014). https://doi.org/10.1103/PhysRevLett.113.083603
Goryachev, M., Farr, W.G., Creedon, D.L., Fan, Y., Kostylev, M., Tobar, M.E.: High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2(5), 054002 (2014). https://doi.org/10.1103/PhysRevApplied.2.054002
Bourhill, J., Kostylev, N., Goryachev, M., Creedon, D., Tobar, M.: Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere. Phys. Rev. B 93(14), 144420 (2016). https://doi.org/10.1103/PhysRevB.93.144420
Kostylev, N., Goryachev, M., Tobar, M.E.: Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. Appl. Phys. Lett. 108(6), 062402 (2016). https://doi.org/10.1063/1.4941730
Julsgaard, B., Grezes, C., Bertet, P., Mølmer, K.: Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. Phys. Rev. Lett. 110(25), 250503 (2013). https://doi.org/10.1103/PhysRevLett.110.250503
Grèzes, C., Kubo, Y., Julsgaard, B., Umeda, T., Isoya, J., Sumiya, H., Abe, H., Onoda, S., Ohshima, T., Nakamura, K., et al.: Towards a spin-ensemble quantum memory for superconducting qubits. C R Phys. 17(7), 693–704 (2016). https://doi.org/10.1016/j.crhy.2016.07.006
Williamson, L.A., Chen, Y.-H., Longdell, J.J.: Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113(20), 203601 (2014). https://doi.org/10.1103/PhysRevLett.113.203601
O’Brien, C., Lauk, N., Blum, S., Morigi, G., Fleischhauer, M.: Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113(6), 063603 (2014). https://doi.org/10.1103/PhysRevLett.113.063603
Hisatomi, R., Osada, A., Tabuchi, Y., Ishikawa, T., Noguchi, A., Yamazaki, R., Usami, K., Nakamura, Y.: Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93(17), 174427 (2016). https://doi.org/10.1103/PhysRevB.93.174427
Bienfait, A., Pla, J., Kubo, Y., Stern, M., Zhou, X., Lo, C., Weis, C., Schenkel, T., Thewalt, M., Vion, D., et al.: Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotechnol. 11(3), 253–257 (2016). https://doi.org/10.1038/nnano.2015.282
Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89(3), 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002
Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349(6246), 405–408 (2015). https://doi.org/10.1126/science.aaa3693
Lachance-Quirion, D., Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Nakamura, Y.: Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Sci. Adv. 3(7), 1603150 (2017). https://doi.org/10.1126/sciadv.1603150
Zhang, X., Zou, C.-L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2(3), 1501286 (2016). https://doi.org/10.1126/sciadv.1501286
Li, J., Zhu, S.-Y., Agarwal, G.: Magnon–photon–phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121(20), 203601 (2018). https://doi.org/10.1103/PhysRevLett.121.203601
Li, J., Zhu, S.-Y., Agarwal, G.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99(2), 021801 (2019). https://doi.org/10.1103/PhysRevA.99.021801
Sun, F.-X., Zheng, S.-S., Xiao, Y., Gong, Q., He, Q., Xia, K.: Remote generation of magnon Schrödinger cat state via magnon–photon entanglement. Phys. Rev. Lett. 127(8), 087203 (2021). https://doi.org/10.1103/PhysRevLett.127.087203
Wang, Y.-D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110(25), 253601 (2013). https://doi.org/10.1103/PhysRevLett.110.253601
Lü, X.-Y., Wu, Y., Johansson, J., Jing, H., Zhang, J., Nori, F.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114(9), 093602 (2015). https://doi.org/10.1103/PhysRevLett.114.093602
Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58(12), 1098 (1940). https://doi.org/10.1103/PhysRev.58.1098
Yang, W., Yin, Z., Chen, Q., Chen, C., Feng, M.: Two-mode squeezing of distant nitrogen-vacancy-center ensembles by manipulating the reservoir. Phys. Rev. A 85(2), 022324 (2012). https://doi.org/10.1103/PhysRevA.85.022324
Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)
Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84(12), 2722 (2000). https://doi.org/10.1103/PhysRevLett.84.2722
Tan, H.-T., Zhu, S.-Y., Zubairy, M.S.: Continuous-variable entanglement in a correlated spontaneous emission laser. Phys. Rev. A 72(2), 022305 (2005). https://doi.org/10.1103/PhysRevA.72.022305
Li, G.-X., Tan, H.-T., Macovei, M.: Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition. Phys. Rev. A 76(5), 053827 (2007). https://doi.org/10.1103/PhysRevA.76.053827
Reid, M.D.: Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40(2), 913 (1989). https://doi.org/10.1103/PhysRevA.40.913
Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76(5), 052116 (2007). https://doi.org/10.1103/PhysRevA.76.052116
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grants Nos. 12165007, 11905064, and 11775190) and the Scientific Research Foundation of Jiangxi Provincial Department of Education, China (Grant No. GJJ200624).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, D., Zhong, W., Cheng, G. et al. Controllable magnon–magnon entanglement and one-way EPR steering with two cascaded cavities. Quantum Inf Process 21, 384 (2022). https://doi.org/10.1007/s11128-022-03731-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03731-2