Skip to main content
Log in

Generalized quantum teleportation of shared quantum secret: a coined quantum-walk approach

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Very recently, many tasks in quantum information processing have been achieved with coined quantum walks. In this paper, an efficient and secure quantum teleportation of shared quantum secret is presented in a quantum-walk architecture. To achieve the transfer of the quantum secret from a group of n senders to another group of m receivers, quantum walk with n walkers on the line is utilized and we adopt two different approaches: the homogeneous coin operator and the position-dependent coin operator. Furthermore, we show that none of the participants can fully access the information. This work not only opens a route to the realization of secure distributed quantum communications and computations in quantum networks, but also opens the wider application purpose of quantum walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)

    ADS  Google Scholar 

  3. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9(10), 641 (2015)

    ADS  Google Scholar 

  4. Lee, S.M., Lee, S.W., Jeong, H., Park, H.S.: Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124(6), 060501 (2020)

    MathSciNet  ADS  Google Scholar 

  5. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023 (2008)

    ADS  Google Scholar 

  6. Cacciapuoti, A.S., Caleffi, M., Van Meter, R., Hanzo, L.: When entanglement meets classical communications: quantum teleportation for the quantum internet. IEEE Trans. Commun. 68(6), 3808 (2020)

    Google Scholar 

  7. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516 (2015)

    ADS  Google Scholar 

  8. Sun, Q.C., Mao, Y.L., Chen, S.J., Zhang, W., Jiang, Y.F., Zhang, Y.B., Zhang, W.J., Miki, S., Yamashita, T., Terai, H., et al.: Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics 10(10), 671 (2016)

    ADS  Google Scholar 

  9. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Krenn, M., Jiang, X., Li, L., Liu, N.L., Lu, C.Y., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123(7), 070505 (2019)

    ADS  Google Scholar 

  10. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

    MathSciNet  ADS  Google Scholar 

  11. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    ADS  Google Scholar 

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharin. Phys. Rev. A 59(3), 1829 (1999)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)

    ADS  Google Scholar 

  14. Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 022501 (2018)

    MathSciNet  Google Scholar 

  15. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    ADS  Google Scholar 

  16. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915 (1998)

    MathSciNet  ADS  Google Scholar 

  17. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    MathSciNet  ADS  Google Scholar 

  18. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)

    MathSciNet  ADS  Google Scholar 

  19. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    ADS  Google Scholar 

  21. Ambainis, A., Kempe, J., Rivosh, A.: In coins make quantum walks faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108. Society for Industrial and Applied Mathematics (2005)

  22. Tulsi, A.: Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78(1), 012310 (2008)

    MATH  ADS  Google Scholar 

  23. Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 110(26), 263602 (2013)

    ADS  Google Scholar 

  24. Xue, P., Zhang, R., Qin, H., Zhan, X., Bian, Z., Li, J., Sanders, B.C.: Experimental quantum-walk revival with a time-dependent coin. Phys. Rev. Lett. 114(14), 140502 (2015)

    ADS  Google Scholar 

  25. Kurzyński, P., Wojcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83(6), 062315 (2011)

    ADS  Google Scholar 

  26. Zhan, X., Qin, H., Bian, Z.h., Li, J., Xue, P.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90(1), 012331 (2014)

  27. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 221 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  28. Li, H.J., Chen, X.B., Wang, Y.L., Hou, Y.Y., Li, J.: A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum Inf. Process. 18(9), 266 (2019)

    ADS  Google Scholar 

  29. Li, M., Shang, Y.: Entangled state generation via quantum walks with multiple coins. npj Quantum Inf. 7(1), 1 (2021)

    MathSciNet  ADS  Google Scholar 

  30. Shang, Y., Li, M.: Experimental realization of state transfer by quantum walks with two coins. Quantum Sci. Technol. 5(1), 015005 (2019)

    ADS  Google Scholar 

  31. Chatterjee, Y., Devrari, V., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation using coined quantum walks. Quantum Inf. Process. 19(1), 1 (2020)

    MathSciNet  ADS  Google Scholar 

  32. Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D., Guha, S.: Routing entanglement in the quantum internet. npj Quantum Inf. 5(1), 1 (2019)

    Google Scholar 

  33. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67(5), 052317 (2003)

    MathSciNet  ADS  Google Scholar 

  34. Venegas, Andraca S., Ball, J., Burnett, K., Bose, S.: Quantum walks with entangled coins. New J. Phys. 7(1), 221 (2005)

    MathSciNet  ADS  Google Scholar 

  35. Liu, C., Petulante, N.: One-dimensional quantum random walks with two entangled coins. Phys. Rev. A 79(3), 032312 (2009)

    ADS  Google Scholar 

  36. Liu, C.: Asymptotic distributions of quantum walks on the line with two entangled coins. Quantum Inf. Process. 11(5), 1193 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  37. Shang, Y., Wang, Y., Li, M., Lu, R.: Quantum communication protocols by quantum walks with two coins. EPL 124(6), 60009 (2019)

    Google Scholar 

  38. Li, H.J., Li, J., Xiang, N., Zheng, Y., Yang, Y.G., Naseri, M.: A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks. Quantum Inf. Process. 18(10), 316 (2019)

    MathSciNet  ADS  Google Scholar 

  39. Chandrashekar, C., Banerjee, S.: Parrondo’s game using a discrete-time quantum walk. Phys. Lett. A 375(14), 1553 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  40. Rajendran, J., Benjamin, C.: Implementing Parrondo’s paradox with two-coin quantum walks. Open Sci. 5(2), 171599 (2018)

    Google Scholar 

  41. Rajendran, J., Benjamin, C.: Playing a true Parrondo’s game with a three-state coin on a quantum walk. EPL 122(4), 40004 (2018)

    ADS  Google Scholar 

  42. Jan, M., Wang, Q.Q., Xu, X.Y., Pan, W.W., Chen, Z., Han, Y.J., Li, C.F., Guo, G.C., Abbott, D.: Experimental realization of Parrondo’s paradox in 1D quantum walks. Adv. Quantum Technol. 66, 1900127 (2020)

    Google Scholar 

  43. Omar, Y., Paunković, N., Sheridan, L., Bose, S.: Quantum walk on a line with two entangled particles. Phys. Rev. A 74(4), 042304 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  44. Pathak, P., Agarwal, G.: Quantum random walk of two photons in separable and entangled states. Phys. Rev. A 75(3), 032351 (2007)

    MathSciNet  ADS  Google Scholar 

  45. Štefaňák, M., Barnett, S., Kollár, B., Kiss, T., Jex, I.: Directional correlations in quantum walks with two particles. New J. Phys. 13(3), 033029 (2011)

    MATH  ADS  Google Scholar 

  46. Rohde, P.P., Schreiber, A., Štefaňák, M., Jex, I., Silberhorn, C.: Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation. New J. Phys. 13(1), 013001 (2011)

    MATH  ADS  Google Scholar 

  47. Berry, S.D., Wang, J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83(4), 042317 (2011)

    ADS  Google Scholar 

  48. Xue, P., Sanders, B.C.: Phys. Rev. A 85(2), 022307 (2012)

  49. Rigovacca, L., Di Franco, C.: Two quantum walkers sharing coins. Sci. Rep. 6, 22052 (2016)

    ADS  Google Scholar 

  50. Wang, Q., Li, Z.J.: Repelling, binding, and oscillating of two-particle discrete-time quantum walks. Ann. Phys. 373, 1 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  51. Rohde, P.P., Schreiber, A., Štefaňák, M., Jex, I., Gilchrist, A., Silberhorn, C.: Increasing the dimensionality of quantum walks using multiple walkers. J. Comput. Theor. Nanosci. 10(7), 1644 (2013)

    Google Scholar 

  52. Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf. Process. 12(3), 1501 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  53. Yang, Y., Yang, J., Zhou, Y., Shi, W., Chen, X., Li, J., Zuo, H.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61(4), 042501 (2018)

    MathSciNet  Google Scholar 

  54. Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  55. Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89(4), 042317 (2014)

    ADS  Google Scholar 

  56. Suzuki, A.: Asymptotic velocity of a position-dependent quantum walk. Quantum Inf. Process. 15(1), 103 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  57. Ahmad, R., Sajjad, U., Sajid, M.: One-dimensional quantum walks with a position-dependent coin. Commun. Theor. Phys. 72(6), 065101 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  58. Montero, M.: Invariance in quantum walks with time-dependent coin operators. Phys. Rev. A 90(6), 062312 (2014)

    ADS  Google Scholar 

  59. Panahiyan, S., Fritzsche, S.: Controlling quantum random walk with a step-dependent coin. New J. Phys. 20(8), 083028 (2018)

    ADS  Google Scholar 

  60. Yalçınkaya, İ, Gedik, Z.: Qubit state transfer via discrete-time quantum walks. J. Phys. A Math. Theor. 48(22), 225302 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  61. Montero, M.: Quantum and random walks as universal generators of probability distributions. Phys. Rev. A 95(6), 062326 (2017)

    MathSciNet  ADS  Google Scholar 

  62. Štefaňák, M., Skoupỳ, S.: Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs. Quantum Inf. Process. 16(3), 72 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  63. Kurzyński, P., Wójcik, A.: Quantum walk as a generalized measuring device. Phys. Rev. Lett. 110(20), 200404 (2013)

    ADS  Google Scholar 

  64. Li, Z., Zhang, H., Zhu, H.: Implementation of generalized measurements on a qudit via quantum walks. Phys. Rev. A 99(6), 062342 (2019)

    ADS  Google Scholar 

  65. Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)

    ADS  Google Scholar 

  66. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 37–49 (2001)

  67. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 50–59 (2001)

Download references

Acknowledgements

This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202108), the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province, the BUPT Excellent Ph.D. Students Foundation (No. CX2020310), the Fundamental Research Funds for the Central Universities (No. 2019XD-A02), the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant Nos. 2018BDKFJJ016, 2018BDKFJJ018, 2019BDKFJJ010, 2019BDKFJJ014), and Huawei Technologies Co.Ltd (No. YBN2020085019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A: The derivation process of the formula (18)

Firstly, we give the quantum state

$$\begin{aligned} \left| \varPhi ^{\prime }\right\rangle =\sum _{k=0}^{m}(\alpha \left| m_{k}\right\rangle \left| 1\right\rangle ^{\otimes (n-1)}\left| 0\right\rangle ^{\otimes n}+\beta \left| m_{k+1}\right\rangle \left| -1\right\rangle ^{\otimes (n-1)}\left| 1\right\rangle ^{\otimes n}){\textbf{P}}[|1\rangle ^{\otimes k}|0\rangle ^{\otimes (m\!-\!k)}],\nonumber \\ \end{aligned}$$
(A.1)

according to the parity of k, which can be written as: \(\left| \varPhi ^{\prime }\right\rangle = \left| \varPhi ^{\prime }\right\rangle _{\text {even}} +\left| \varPhi ^{\prime }\right\rangle _{\text {odd}}\) defined by

$$\begin{aligned} \left| \varPhi ^{\prime }\right\rangle _{\text {even}}&=\sum _{k=0}^{m^{\prime }}\alpha \left| m_{2k}\right\rangle \left| 1\right\rangle ^{\otimes (n-1)}\left| 0\right\rangle ^{\otimes n}{\textbf{P}}\left[ |1\rangle ^{\otimes 2k}|0\rangle ^{\otimes (m\!-\!2k)}\right] \nonumber \\&\quad +\sum _{k=0}^{m^{\prime \prime }}\beta \left| m_{2k\!+\!2}\right\rangle \left| -1\right\rangle ^{\otimes (n-1)}\left| 1\right\rangle ^{\otimes n}{\textbf{P}}\left[ |1\rangle ^{\otimes (2k\!+\!1)}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right] , \end{aligned}$$
(A.2a)
$$\begin{aligned} \left| \varPhi ^{\prime \prime }\right\rangle _{\text {odd}}&=\sum _{k=0}^{m^{\prime \prime }}\alpha \left| m_{2k\!+\!1}\right\rangle \left| 1\right\rangle ^{\otimes (n-1)}\left| 0\right\rangle ^{\otimes n}{\textbf{P}}\left[ |1\rangle ^{\otimes (2k\!+\!1)}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right] \nonumber \\&\quad +\sum _{k=0}^{m^{\prime }}\beta \left| m_{2k+1}\right\rangle \left| -1\right\rangle ^{\otimes (n-1)}\left| 1\right\rangle ^{\otimes n}{\textbf{P}}\left[ |1\rangle ^{\otimes 2k}|0\rangle ^{\otimes (m\!-\!2k)}\right] , \end{aligned}$$
(A.2b)

where \(m^{\prime }=[\frac{m}{2}]\), \(m^{\prime \prime }=[\frac{m-1}{2}]\). Next, by utilizing the following equations:

$$\begin{aligned} {\textbf{P}}\left[ |1\rangle ^{\otimes 2k}|0\rangle ^{\otimes (m\!-\!2k)}\right]&={\textbf{P}}\left[ |1\rangle ^{\otimes 2k}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right] |0\rangle + {\textbf{P}}\left[ |1\rangle ^{\otimes 2k\!-\!1}|0\rangle ^{\otimes (m\!-\!2k)}\right] |1\rangle , \end{aligned}$$
(A.3a)
$$\begin{aligned} {\textbf{P}}\left[ |1\rangle ^{\otimes 2k\!+\!1}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right]&={\textbf{P}}\left[ |1\rangle ^{\otimes 2k\!+\!1}|0\rangle ^{\otimes (m\!-\!2k\!-\!2)}\right] |0\rangle + {\textbf{P}}\left[ |1\rangle ^{\otimes 2k}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right] |1\rangle , \end{aligned}$$
(A.3b)

the initial state \(\left| \varPhi ^{\prime }\right\rangle \) can be expressed as:

$$\begin{aligned} \left| \varPhi ^{\prime }\right\rangle{} & {} =\sum _{k=0}^{m^{\prime \prime }}\alpha \left| m_{2k}\right\rangle \left| 1\right\rangle ^{\otimes (n-1)}\left| 0\right\rangle ^{\otimes n}{\textbf{P}}\left[ |1\rangle ^{\otimes 2k}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right] |0\rangle \nonumber \\{} & {} \qquad +\sum _{k=1}^{m^{\prime }}\alpha \left| m_{2k}\right\rangle \left| 1\right\rangle ^{\otimes (n-1)}\left| 0\right\rangle ^{\otimes n} \nonumber \\{} & {} \qquad {\textbf{P}}\left[ |1\rangle ^{\otimes (2k\!-\!1)}|0\rangle ^{\otimes (m\!-\!2k)}\right] |1\rangle +\sum _{k=0}^{m^{\prime }-1}\beta \left| m_{2k\!+\!2}\right\rangle \left| -1\right\rangle ^{\otimes (n-1)}\left| 1\right\rangle ^{\otimes n}\nonumber \\{} & {} \qquad {\textbf{P}}\left[ |1\rangle ^{\otimes (2k+1)}|0\rangle ^{\otimes (m\!-\!2k-2)}\right] |0\rangle \nonumber \\{} & {} \quad +\sum _{k=0}^{m^{\prime \prime }}\beta \left| m_{2k\!+\!2}\right\rangle \left| -1\right\rangle ^{\otimes (n-1)}\left| 1\right\rangle ^{\otimes n}{\textbf{P}}\left[ |1\rangle ^{\otimes (2k)}|0\rangle ^{\otimes (m\!-\!2k-1)}\right] |1\rangle \nonumber \\{} & {} \quad +\sum _{k=0}^{m^{\prime }\!-\!1}\alpha \left| m_{2k\!+\!1}\right\rangle \left| 1\right\rangle ^{\otimes (n-1)}\left| 0\right\rangle ^{\otimes n} \nonumber \\{} & {} \qquad {\textbf{P}}\left[ |1\rangle ^{\otimes (2k\!+\!1)}|0\rangle ^{\otimes (m\!-\!2k\!-\!2)}\right] |0\rangle +\sum _{k=0}^{m^{\prime \prime }}\alpha \left| m_{2k\!+\!1}\right\rangle \left| 1\right\rangle ^{\otimes (n-1)}\left| 0\right\rangle ^{\otimes n}\nonumber \\{} & {} \qquad {\textbf{P}}\left[ |1\rangle ^{\otimes (2k)}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right] |1\rangle \nonumber \\{} & {} \quad +\sum _{k=0}^{m^{\prime \prime }}\beta \left| m_{2k+1}\right\rangle \left| -1\right\rangle ^{\otimes (n-1)}\left| 1\right\rangle ^{\otimes n}{\textbf{P}}\left[ |1\rangle ^{\otimes 2k}|0\rangle ^{\otimes (m\!-\!2k\!-\!1)}\right] |0\rangle \nonumber \\{} & {} \quad +\sum _{k=1}^{m^{\prime }}\beta \left| m_{2k+1}\right\rangle \left| -1\right\rangle ^{\otimes (n-1)}\left| 1\right\rangle ^{\otimes n} \nonumber \\{} & {} \qquad {\textbf{P}}\left[ |1\rangle ^{\otimes (2k\!-\!1)}|0\rangle ^{\otimes (m\!-\!2k)}\right] |1\rangle . \end{aligned}$$
(A.4)

Then, by adjusting the order of the terms, it will become the same as the formula (18).

1.2 Appendix B

Next, we prove that any two quantum states at the receivers \(\{{\varvec{{r}}}_{1}, {\varvec{{r}}}_{2},\ldots ,{\varvec{{r}}}_{m}\}\) are symmetric, that is

$$\begin{aligned} \begin{aligned} |\varPhi _{h,s}\rangle _{r}^{m}&=(-1)^{s}|1\rangle ^{\otimes ^{m\!-\!1}}_{\text {odd}}\sigma _{x}\sigma _{z}^{\omega _{h,m}}|\phi \rangle +|1\rangle ^{\otimes ^{m\!-\!1}}_{\text {even}}\sigma _{z}^{\omega _{h,m}}R_{z}(\theta _{s})|\phi \rangle \\&=(-1)^{s}\left( |1\rangle ^{\otimes ^{j\!-\!1}}_{\text {even}}\sigma _{x}\sigma _{z}^{\omega _{h,m}}|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {odd}} +|1\rangle ^{\otimes ^{j\!-\!1}}_{\text {odd}}\sigma _{x}\sigma _{z}^{\omega _{h,m}}|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {even}}\right) \\&\quad +|1\rangle ^{\otimes ^{j\!-\!1}}_{\text {even}}\sigma _{z}^{\omega _{h,m}}R_{z}(\theta _{s})|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {even}} +|1\rangle ^{\otimes ^{j\!-\!1}}_{\text {odd}}\sigma _{z}^{\omega _{h,m}}R_{z}(\theta _{s})|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {odd}}. \end{aligned}\nonumber \\ \end{aligned}$$
(B.1)

First of all, it can be derived that

$$\begin{aligned} \begin{aligned} |\varPhi _{h,s}\rangle _{r}^{m}&=|1\rangle ^{\otimes ^{m\!-\!2}}_{\text {odd}}\left[ (-1)^{s}\sigma _{x}\sigma _{z}^{\omega _{h,m}}|\phi \rangle |0\rangle +\sigma _{z}^{\omega _{h,m}}R_{z}(\theta _{s})|\phi \rangle )\right] |1\rangle \\&\quad +|1\rangle ^{\otimes ^{m\!-\!2}}_{\text {even}}\left[ (-1)^{s}(\sigma _{x}\sigma _{z}^{\omega _{h,m}}|\phi \rangle |1\rangle +\sigma _{z}^{\omega _{h,m}}R_{z}(\theta _{s})|\phi \rangle |0\rangle )\right] , \end{aligned} \end{aligned}$$
(B.2)

with the equation

$$\begin{aligned} \begin{aligned}&(-1)^{s}|a\rangle \sigma _{x}\sigma _{z}^{\omega _{h,m}}|\phi \rangle +|(a\!+\!1)\,\text {mod}\, 2\rangle \sigma _{z}^{\omega _{h,m}}R_{z}(\theta _{s})|\phi \rangle \\&=(-1)^{s}\sigma _{x}\sigma _{z}^{\omega _{h,m}}|\phi \rangle |a\rangle +\sigma _{z}^{\omega _{h,m}}R_{z}(\theta _{s})|\phi \rangle |(a\!+\!1)\,\text {mod}\, 2\rangle ,\,a=\{0,1\}, \end{aligned} \end{aligned}$$
(B.3)

which implies that the quantum states of \(\{{\varvec{{r}}}_{m-1},{\varvec{{r}}}_{m}\}\) are symmetric. It is obvious that the quantum states of any two receivers of \(\{{\varvec{{r}}}_{1},\ldots ,{\varvec{{r}}}_{m-1}\}\) are symmetric. Therefore, it can be concluded that any two quantum states at the receivers \(\{{\varvec{{r}}}_{1}, {\varvec{{r}}}_{2},\ldots ,{\varvec{{r}}}_{m}\}\) are symmetric.

Next, after any receiver \({\varvec{{r}}}_{j}\) and the other \(m\!-\!1\) receivers, respectively, performing the Pauli operator \(\sigma _{z}^{\omega _{h,m}}\sigma _{x}\) and \(\sigma _{z}^{\omega _{h,m}}\), it will yield

$$\begin{aligned} \begin{aligned}&|1\rangle ^{\otimes ^{j\!-\!1}}_{\text {even}}|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {odd}} +|1\rangle ^{\otimes ^{j\!-\!1}}_{\text {odd}}|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {even}}+(-1)^{w_{h}+s}\\&\left( |1\rangle ^{\otimes ^{j\!-\!1}}_{\text {even}}\sigma _{x}R_{z}(\theta _{s})|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {even}} +|1\rangle ^{\otimes ^{j\!-\!1}}_{\text {odd}}\sigma _{x}R_{z}(\theta _{s})|\phi \rangle _{j}|1\rangle ^{\otimes ^{m\!-\!j\!-\!1}}_{\text {odd}}\right) , \end{aligned} \end{aligned}$$
(B.4)

which is equal to \(|1\rangle ^{\otimes ^{m\!-\!1}}_{\text {odd}}|\phi \rangle +(-1)^{w_{h}+s}|1\rangle ^{\otimes ^{m\!-\!1}}_{\text {even}}\sigma _{x}R_{z}(\theta _{s})|\phi \rangle \), that can be proved by the following equation

$$\begin{aligned} \begin{aligned}&|a\rangle |\phi \rangle +(-1)^{w_{h}+s}|(a+1)\,\text {mod}\, 2\rangle \sigma _{x}R_{z}(\theta _{s})|\phi \rangle \\&=|\phi \rangle |a\rangle +(-1)^{w_{h}+s}\sigma _{x}R_{z}(\theta _{s})|\phi \rangle |(a+1)\,\text {mod}\, 2\rangle ,\,a=\{0,1\}. \end{aligned} \end{aligned}$$
(B.5)

As a result, the state \(|\varPhi _{h,s}\rangle _{r}^{m}\) will become \(|\varPhi _{h,s}^{\prime }\rangle _{r}^{m}\), after the proper unitary operators. Similarly, while the result on \(s_{p_{1}}\) is 0s, the receivers can do the same as the result is 1t, however, which will yield

$$\begin{aligned} |\varPhi _{h,t}^{\prime }\rangle _{r}^{m}=|1\rangle ^{\otimes ^{m\!-\!1}}_{\text {even}}|\phi \rangle +(-1)^{w_{h}}|1\rangle ^{\otimes ^{m\!-\!1}}_{\text {odd}}\sigma _{x}R_{z}(\vartheta _{t})|\phi \rangle . \end{aligned}$$
(B.6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HJ., Li, J. & Chen, X. Generalized quantum teleportation of shared quantum secret: a coined quantum-walk approach. Quantum Inf Process 21, 387 (2022). https://doi.org/10.1007/s11128-022-03741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03741-0

Keywords

Navigation