Skip to main content
Log in

High-dimensional bidirectional controlled teleportation based on network coding

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two explicit schemes are designed to illustrate bidirectional controlled teleportation in a fair and practical manner. One is a symmetric scheme for single-qutrit states. The other is an asymmetric scheme for single- and two-qutrit states. Then, we extend three-dimensional system to high-dimensional system and come up with a universal scheme for arbitrary \(n_1\)- and \(n_2\)-qudit states by using a \((2n_1+2n_2+1)\)-qudit entangled state as the quantum channel, where \(n_1\le n_2\). The senders and the controller need to perform general Bell basis measurement and Z basis measurement, respectively. According to their measurement results, the receivers can reestablish the initial states simultaneously by performing single-qudit recovery operations which are derived by a general formula. It is worth mentioning that \(2n_1+1\) dit classical communication cost is saved at the controller’s broadcast channel with the aid of network coding. Moreover, we consider the effect of two-type high-dimensional decoherence noises: dit-flip noise and d-phase-flip noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Luo, M.X.: New genuinely multipartite entanglement. Adv. Quantum Technol. 4, 2000123 (2021)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  3. Lo, A.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    ADS  Google Scholar 

  4. Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)

    MATH  ADS  Google Scholar 

  5. Karlsson, A., Bourennane, M.: Quantum teleportation using three particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    MathSciNet  ADS  Google Scholar 

  6. Chen, X.B., Wen, Q.Y., Sun, Z.X., Shangguan, L.Y., Yang, Y.X.: Deterministic and exact entanglement teleportation via the W state. Chin. Phys. B 19, 010303 (2010)

    ADS  Google Scholar 

  7. Li, D.F., Wang, R.J., Baagyere, E.: Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quantum Inf. Process. 18, 147 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  8. Bich, C.T., An, N.B.: Hierarchically controlling quantum teleportations. Quantum Inf. Process. 18, 245 (2019)

    MathSciNet  ADS  Google Scholar 

  9. Tang, J., Ma, S.Y., Li, Q.: Universal hierarchical quantum information splitting schemes of an arbitrary multi-qubit state. Int. J. Theor. Phys. 61, 209 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Tang, J., Ma, S.Y., Li, Q.: Probabilistic hierarchical quantum information splitting of arbitrary multi-qubit states. Entropy 24, 1077 (2022)

    MathSciNet  Google Scholar 

  11. Jiang, L.N.: Quantum teleportation under different local independent noise environment. Int. J. Theor. Phys. 58, 3899–3907 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 104 (2019)

    MATH  ADS  Google Scholar 

  13. Chatterjee, Y., Devrari, V., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation using coined quantum walks. Quantum Inf. Process. 19, 31 (2020)

    ADS  Google Scholar 

  14. Rajiuddin, S., Baishya, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf. Process. 19, 87 (2020)

    ADS  Google Scholar 

  15. Luo, M.X.: Nonsignaling causal hierarchy of general multisource networks. Phys. Rev. A 101, 062317 (2020)

    MathSciNet  ADS  Google Scholar 

  16. Mishra, M.K., Maurya, A.K., Prakash, H.: Two-way quantum communication: “secure quantum information exchange’’. J. Phys. B At. Mol. Opt. Phys. 44, 115504 (2011)

    ADS  Google Scholar 

  17. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    MathSciNet  Google Scholar 

  18. Jiang, S.X., Zhou, R.G., Luo, G.F., Liang, X.Z., Fan, P.: Controlled bidirectional quantum teleportation of arbitrary single qubit via a non-maximally entangled state. Int. J. Theor. Phys. 59, 2966–2983 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014)

    MATH  Google Scholar 

  20. Yuan, H., Pan, G.Z.: Bidirectional quantum-controlled teleportation using six-qubit cluster state without remote joint operation. Mod. Phys. Lett. A 35, 2050192 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  21. Choudhury, B.S., Dhara, A.: A bidirectional teleportation protocol for arbitrary two-qubit state under the supervision of a third party. Int. J. Theor. Phys. 55, 2275–2285 (2016)

    MATH  Google Scholar 

  22. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  23. Wang, S.M., Zhang, W., Liao, C.: Controlled bidirectional two-qubit quantum teleportation. Acta Photonica Sin. 47, 927002 (2018)

    Google Scholar 

  24. Verma, V.: Bidirectional quantum teleportation of two-qubit entangled state by using \(G\)-state as a quantum channel. Phys. Scr. 95, 115101 (2020)

    ADS  Google Scholar 

  25. Sang, M.H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 380–383 (2016)

    MATH  Google Scholar 

  26. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  27. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 384–387 (2016)

    MATH  Google Scholar 

  28. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016)

    MATH  Google Scholar 

  29. Nie, Y.Y., Sang, M.H.: Asymmetric bidirectional controlled teleportation via seven-photon entangled state. Int. J. Theor. Phys. 56, 3452–3454 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Zhou, R.G., Zhang, Y.N., Xu, R., Qian, Q.C., Ian, H.: Asymmetric bidirectional controlled teleportation by using nine-qubit entangled state in noisy environment. IEEE Access 7, 75247–75264 (2019)

    Google Scholar 

  31. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theor. 46, 1204–1216 (2000)

    MathSciNet  MATH  Google Scholar 

  32. He, M.Y., Ma, S.Y., Kang, K.P.: A universal protocol for bidirectional controlled teleportation with network coding. Commun. Theor. Phys. 73, 105104 (2021)

    MathSciNet  ADS  Google Scholar 

  33. Cozzolino, D., Da Lio, B., Bacco, D., Oxenlowe, L.K.: High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2, 1900038 (2019)

    Google Scholar 

  34. Yang, X., Bai, M.Q., Mo, Z.W., Xiang, Y.: Bidirectional and cyclic quantum dense coding in a high-dimension system. Quantum Inf. Process. 19, 43 (2020)

    MathSciNet  ADS  Google Scholar 

  35. Liu, L., Niu, J.L., Fan, C.R., Feng, X.T., Wang, C.: High-dimensional measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 404 (2020)

    MathSciNet  ADS  Google Scholar 

  36. Hu, W.W., Zhou, R.G., Li, X., Fan, P., Tan, C.Y.: A novel dynamic quantum secret sharing in high-dimensional quantum system. Quantum Inf. Process. 20, 159 (2021)

    MathSciNet  ADS  Google Scholar 

  37. Dong, H., Lu, D.Y., Li, C.: A novel qutrit representation of quantum image. Quantum Inf. Process. 21, 108 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  38. Liao, C., Zhang, W., Liu, H.B., Wang, S.M.: Bidirectional quantum teleportation controlled by single-qutrit state. Acta Photonica Sin. 46, 0527002 (2017)

    Google Scholar 

  39. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Bidirectional controlled quantum teleportation in the three-dimension system. Int. J. Theor. Phys. 57, 2233–2240 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Liao, C., Wang, S.M., Wang, C.F., Liu, H.B., Tian, X.L.: A general method of controlled bidirectional quantum teleportation of qudit state. J. Mod. Opt. 64, 1495–1500 (2017)

    ADS  Google Scholar 

  41. Hayashi, M., Iwama, K., Nishimura, H.: Quantum network coding. In: Proceedings of the 24th Annual Conference on Theoretical Aspects of Computer Science, pp. 610–621. Springer, Berlin (2007)

  42. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76, 040301 (2007)

    MathSciNet  ADS  Google Scholar 

  43. Ma, S.Y., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Probabilistic quantum network coding of \(M\)-qudit states over the butterfly network. Opt. Commun. 283, 497–501 (2010)

    ADS  Google Scholar 

  44. Pan, X.B., Chen, X.B., Xu, G., Li, Z.P., Yang, Y.X.: High dimensional quantum network coding based on prediction mechanism over the butterfly network. Quantum Sci. Technol. 7, 015006 (2022)

    ADS  Google Scholar 

  45. Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: General scheme for perfect quantum network coding with free classical communication. Lect. Notes Comput. Sci. 5555, 622–633 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inform. Sci. 62, 012501 (2018)

    Google Scholar 

  47. Satoh, T., Ishizaki, K., Nagayama, S., Van Meter, R.: Analysis of quantum network coding for realistic repeater networks. Phys. Rev. A 93, 032302 (2016)

    ADS  Google Scholar 

  48. Majumdar, M.G., Garani, S.S.: Quantum network recovery from multinode failure using network encoding with GHZ states on higher-order butterfly networks. Quantum Inf. Process. 20, 388 (2021)

    MATH  ADS  Google Scholar 

  49. Chen, X., Zhou, R.G., Li, X., Zhang, X.X.: Controllable quantum network coding scheme based on quantum walk. Int. J. Theor. Phys. 60, 3363–3374 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, J.H., Jiang, M.: Butterfly network coding based on bidirectional hybrid controlled quantum communication. Quantum Inf. Process. 21, 107 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  51. Lu, H., Li, Z.D., Yin, X.F., Zhang, R., Fang, X.X., Li, L., Liu, N.L., Xu, F.H., Chen, Y.A., Pan, J.W.: Experimental quantum network coding. NPJ Quantum Inf. 5, 89 (2019)

    ADS  Google Scholar 

  52. Shih, H., Lee, K., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15, 1602–1606 (2009)

    ADS  Google Scholar 

  53. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)

    ADS  Google Scholar 

  54. Fonseca, A.: High-dimensional quantum teleportation under noisy environments. Phys. Rev. A 100, 6 (2019)

    Google Scholar 

  55. Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., Zeilinger, A.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. A 119, 180510 (2017)

    Google Scholar 

  56. De Oliveira, M., Nape, I., Pinnell, J., TabeBordbar, N., Forbes, A.: Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons. Phys. Rev. A 101, 042303 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61201253, 62172341, 62172196, 62272208), Open Foundation of State Key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (No. SKLNST-2020-2-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songya Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., He, M. & Jiang, J. High-dimensional bidirectional controlled teleportation based on network coding. Quantum Inf Process 21, 398 (2022). https://doi.org/10.1007/s11128-022-03744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03744-x

Keywords

Navigation