Abstract
Uncertainty relations are the basis of quantum mechanics. We study the uncertainty relation for quantum channels by skew information. An uncertainty relation for quantum channels is provided, which can be generalized to more than two channels. This uncertainty relation is shown to be independent of the Kraus representations of quantum channels. We then establish an uncertainty relation for skew information of coherence under different bases in qubit systems.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)
Robertson, H.P.: The Uncertainty Principle. Phys. Rev. 34, 163 (1929)
Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)
Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
Wu, S., Yu, S., Mølmer, K.: Entropic uncertainty relation for mutually unbiased bases. Phys. Rev. A. 79, 022104 (2009)
Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)
Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)
Gour, G., Grudka, A., Horodecki, M., Kłobus, W., Łodyga, J., Narasimhachar, V.: Conditional uncertainty principle. Phys. Rev. A. 97, 042130 (2018)
Grudka, A., Horodecki, M., Horodecki, P., Horodecki, R., Kłobus, W., Pankowski, Ł: Conjectured strong complementary-correlations tradeoff. Phys. Rev. A. 88, 032106 (2013)
Friedland, S., Gheorghiu, V., Gour, G.: Universal uncertainty relations. Phys. Rev. Lett. 111, 230401 (2013)
Puchała, Z., Rudnicki, Ł, Życzkowski, K.: Majorization entropic uncertainty relations. J. Phys. A: Math. Theor. 46, 272002 (2013)
Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)
Vallone, G., Marangon, D.G., Tomasin, M., Villoresi, P.: Quantum randomness certified by the uncertainty principle. Phys. Rev. A 90, 052327 (2014)
Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6, 011020 (2016)
Berta, M., Coles, P.J., Wehner, S.: Entanglement-assisted guessing of complementary measurement outcomes. Phys. Rev. A 90, 062127 (2014)
Walborn, S.P., Salles, A., Gomes, R.M., Toscano, F., Ribeiro, P.H.S.: Revealing Hidden Einstein–Podolsky–Rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011)
Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Einstein–Podolsky–Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)
Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)
Luo, S.: Quantum versus classical uncertainty. Thero. Math. Phys. 143, 681 (2005)
Zhang, L.M., Gao, T., Yan, F.L.: Tighter uncertainty relations based on Wigner–Yanase skew information for observables and channels. Phys. Lett. A. 387, 127029 (2021)
Luo, S.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)
Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A. 98, 012113 (2018)
Yu, C.: Quantum coherence via skew information and its polygamy. Phys. Rev. A. 95, 042337 (2017)
Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer, Berlin (1995)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambride University Press, Cambridge (2010)
Xu, J.: Coherence of quantum channels. Phys. Rev. A. 100, 052311 (2019)
Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A. 92, 032331 (2015)
Takahashi, M., Rana, S., Streltsov, A.: Creating and destroying coherence with quantum channels. Phys. Rev. A. 105, 060401 (2022)
Fu, S., Sun, Y., Luo, S.: Skew information-based uncertainty relations for quantum channels. Quantum Inf. Process. 18, 258 (2019)
Zhang, Q.H., Wu, J.F., Fei, S.M.: A note on uncertainty relations of arbitrary N quantum channels. Laser. Phys. Lett. 18, 095204 (2021)
Furuich, S., Yanagi, K., Kuriyama, K.: Trace inequalities on a generalized Wigner–Yanase skew information. J. Math. Anal. Appl. 356, 179 (2009)
Fan, Y., Cao, H., Wang, W., Meng, H., Chen, L.: Uncertainty relations with the generalized Wigner–Yanase–Dyson skew information. Quantum Inf. Process. 17, 157 (2018)
Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)
Yuan, X., Bai, G., Peng, T., Ma, X.: Quantum uncertainty relation using coherence. Phys. Rev. A. 96, 032313 (2017)
Acknowledgements
M. J. Zhao is supported by the National Natural Science Foundation of China under Grants No. 12171044. Z. Wang is supported by Shandong Provincial National Natural Science Foundation under Grant No. ZR2020MA034. T. Li is supported by Projection of education and teaching, Beijing Technology and Business University, 2021.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, N., Zhao, MJ., Wang, Z. et al. The uncertainty relation for quantum channels based on skew information. Quantum Inf Process 22, 6 (2023). https://doi.org/10.1007/s11128-022-03760-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03760-x