Skip to main content
Log in

Quantum thermometry in electromagnetic field of cosmic string spacetime

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme for enhancing the quantum Fisher information of quantum thermometry is proposed where the detector used to explore the thermal bath in cosmic string spacetime is a two-level atom which is coupled to electromagnetic fields. By deriving its dynamical evolution via the method of open quantum system, our scheme indicates the quantum Fisher information of temperature depends on the deficit angle, evolution time, detector initial state, polarization direction, the temperature itself and its position. Our results show the quantum Fisher information can finally be maximized by the estimation of local measurements, and therefore, the precision of estimation can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Gati, R., Hemmerling, B., Folling, J., Albiez, M., Oberthaler, M.K.: Noise thermometry with two weakly coupled Bose-einstein condensates. Phys. Rev. Lett. 96(13), 130404 (2006)

    ADS  Google Scholar 

  2. Sabín, C., White, A., Hackermuller, L., Fuentes, I.: Impurities as a quantum thermometer for a Bose-Einstein condensate. Sci. Rep. 4(1), 1–6 (2014)

    Google Scholar 

  3. Mehboudi, M., Moreno-Cardoner, M., De Chiara, G., Sanpera, A.: Thermometry precision in strongly correlated ultracold lattice gases. J. Phys 17(5), 055020 (2015)

    Google Scholar 

  4. Hohmann, M., Kindermann, F., Lausch, T., Mayer, D., Schmidt, F., Widera, A.: Single-atom thermometer for ultracold gases. Phys. Rev. A 93(4), 043607 (2016)

    ADS  Google Scholar 

  5. Bouton, Q., Nettersheim, J., Adam, D., et al.: Single-atom quantum probes for ultracold gases boosted by nonequilibrium spin dynamics. Phys. Rev. X 10(1), 011018 (2020)

    Google Scholar 

  6. Raitz, C., Souza, A.M., Auccaise, R., Sarthour, R.S., Oliveira, I.S.: Experimental implementation of a nonthermalizing quantum thermometer. Quantum Inf. Process. 14(1), 37–46 (2015)

    ADS  Google Scholar 

  7. Brunelli, M., Olivares, S., Paris, M.G.: Qubit thermometry for micromechanical resonators. Phys. Rev. A 84(3), 032105 (2011)

    ADS  Google Scholar 

  8. Brunelli, M., Olivares, S., Paternostro, M., Paris, M.G.: Qubit-assisted thermometry of a quantum harmonic oscillator. Phys. Rev. A 86(1), 012125 (2012)

    ADS  Google Scholar 

  9. Mehboudi, M., Sanpera, A., Correa, L.A.: Thermometry in the quantum regime: recent theoretical progress. J. Phys. A 52(30), 303001 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Pasquale, A.D., Stace, T.M.: Quantum Thermometry. Springer, Cham (2018)

    Google Scholar 

  11. Stace, T.M.: Quantum limits of thermometry. Phys. Rev. A 82(1), 011611 (2010)

    ADS  Google Scholar 

  12. Correa, L.A., Mehboudi, M., Adesso, G., Sanpera, A.: Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 114(22), 220405 (2015)

    ADS  Google Scholar 

  13. Mok, W.K., Bharti, K., Kwek, L.C., Bayat, A.: Optimal probes for global quantum thermometry. Commun. Phys. 4(1), 1–8 (2021)

    Google Scholar 

  14. Rubio, J., Anders, J., Correa, L.A.: Global quantum thermometry. Phys. Rev. Lett. 127(19), 190402 (2021)

    ADS  MathSciNet  Google Scholar 

  15. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Edizioni della Normale, Pisa (1982)

    MATH  Google Scholar 

  16. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330 (2004)

    ADS  Google Scholar 

  17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  18. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7(supp01), 125 (2009)

    MATH  Google Scholar 

  19. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrolog. Nat. Photon. 5(4), 222 (2011)

    ADS  Google Scholar 

  20. Falaye, B.J., Serrano, F.A., Dong, S.H.: Fisher information for the position-dependent mass Schrodinger system. Phys. Lett. A 380(1–2), 267–271 (2016)

    ADS  MATH  Google Scholar 

  21. Torres-Arenas, A.J., Dong, Q., Sun, G.H., Dong, S.H.: Radial position-momentum uncertainties for the infinite circular well and Fisher entropy. Phys. Lett. A 382(26), 1752–1759 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88(1), 014301 (2013)

    ADS  Google Scholar 

  23. Akbari-Kourbolagh, Y., Azhdargalam, M.: Entanglement criterion for multipartite systems based on quantum Fisher information. Phys. Rev. A 99(1), 012304 (2019)

    ADS  Google Scholar 

  24. Wang, T.L., Wu, L.N., Yang, W., Jin, G.R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. J. Phy 16(6), 063039 (2014)

    MathSciNet  Google Scholar 

  25. Correa, L.A., Mehboudi, M., Adesso, G., Sanpera, A.: Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 114(22), 220405 (2015)

    ADS  Google Scholar 

  26. Zhao, Z., Pan, Q., Jing, J.: Quantum estimation of acceleration and temperature in open quantum system. Phys. Rev. D 101(5), 056014 (2020)

    ADS  MathSciNet  Google Scholar 

  27. Xie, D., Sun, F.X., Xu, C.: Quantum thermometry based on a cavity-QED setup. Phys. Rev. A 101(6), 063844 (2020)

    ADS  MathSciNet  Google Scholar 

  28. Xie, D., Xu, C., Wang, A.M.: Optimal quantum thermometry by dephasing. Quantum Inf. Process. 16(6), 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Du, H., Mann, R.B.: Fisher information as a probe of spacetime structure relativistic quantum metrology in (A) dS. J. High Energ. Phys. 2021(5), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Liu, X., Jing, J., Tian, Z., Yao, W.: Does relativistic motion always degrade quantum Fisher Information? Phys. Rev. D 103(12), 125025 (2021)

    ADS  MathSciNet  Google Scholar 

  31. Huang, C., Ma, W.C., Wang, D., Ye, L.: How the Hawking radiation affect quantum Fisher information of Dirac particles in the background of a Schwarzschild black hole. Quantum Inf. Process. 17(1), 1–15 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Guvendi, A., Sucu, Y.: An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string. Phys. Lett. B 811, 135960 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Bellucci, S., Oliveira dos Santos, W., Bezerra de Mello, E.R., Saharian, A.A.: Topological effects in a fermionic condensate induced by a cosmic string and compactification on the AdS bulk. Symmetry 14(3), 584 (2022)

    ADS  MATH  Google Scholar 

  34. Davies, P.C.W., Sahni, V.: Quantum gravitational effects near cosmic strings. Class. Quant. Grav. 5(1), 1 (1988)

    ADS  MathSciNet  Google Scholar 

  35. de Mello, E.B., Bezerra, V.B., Saharian, A.A., Tarloyan, A.S.: Vacuum polarization induced by a cylindrical boundary in the cosmic string spacetime. Phys. Rev. D 74(2), 025017 (2006)

    ADS  Google Scholar 

  36. de Mello, E.B., Bezerra, V.B., Saharian, A.A., Tarloyan, A.S.: Fermionic vacuum polarization by a cylindrical boundary in the cosmic string spacetime. Phys. Rev. D 78(10), 105007 (2008)

    ADS  Google Scholar 

  37. Filgueiras, C., Moraes, F.: The bound-state Aharonov-Bohm effect around a cosmic string revisited. Phys. Lett. A 361(1–2), 13–15 (2007)

    ADS  MATH  Google Scholar 

  38. Bakke, K., Mota, H.: Aharonov-Bohm effect for bound states in the cosmic string spacetime in the context of rainbow gravity. Gen. Relativ. Gravit 52(10), 1–15 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Aliev, A.N.: Casimir effect in the spacetime of multiple cosmic strings. Phys. Rev. D 55(6), 3903 (1997)

    ADS  Google Scholar 

  40. de Mello, E.B., Saharian, A.A.: Topological Casimir effect in compactified cosmic string spacetime. Class. Quant. Grav. 29(3), 035006 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Huang, Z., Situ, H., He, Z.: Quantum Fisher information in the cosmic string spacetime. Class. Quant. Grav. 37(17), 175002 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Wang, Z., Xu, C.: Discussion on the geometric phase for an open two-level system in the cosmic string spacetime with torsion. Europhys. Lett. 126(5), 50005 (2019)

    Google Scholar 

  43. Cai, H., Yu, H., Zhou, W.: Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime. Phys. Rev. D 92(8), 084062 (2015)

    ADS  Google Scholar 

  44. Jin, Y.: Precision protection through cosmic string in quantum metrology. Eur. Phys. J. C 80(12), 1–7 (2020)

    Google Scholar 

  45. Yang, Y., Wang, J., Wang, M., Jing, J., Tian, Z.: Parameter estimation in cosmic string space-time by using the inertial and accelerated detectors. Class. Quant. Grav. 37(6), 065017 (2020)

    ADS  MATH  Google Scholar 

  46. Yang, Y., Jing, J., Tian, Z.: Probing cosmic string spacetime through parameter estimation. Eur. Phys. J. C 82(8), 1–10 (2022)

    ADS  Google Scholar 

  47. Linet, B.: Quantum field theory in the space-time of a cosmic string. Phys. Rev. D 35(2), 536 (1987)

    ADS  MathSciNet  Google Scholar 

  48. Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University, Oxford (2002)

    MATH  Google Scholar 

  49. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Kimura, G.: The bloch vector for N-level systems. Phys. Lett. A 314(5–6), 339 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Cramér, H.: Mathematical Methods of Statistics. Princeton University, Princeton (2016)

    MATH  Google Scholar 

  52. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1(2), 231–252 (1969)

    ADS  MathSciNet  Google Scholar 

  53. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in bloch representation. Phys. Rev. A 87(2), 022337 (2013)

    ADS  Google Scholar 

  54. Hendry, P.C., Lawson, N.S., Lee, R.A.M., McClintock, P.V., Williams, C.D.H.: Generation of defects in superfluid 4He as an analogue of the formation of cosmic strings. Nature 368(6469), 315–317 (1994)

    ADS  Google Scholar 

  55. Sátiro, C., Moraes, F.: A liquid crystal analogue of the cosmic string. Mod. Phys. Lett. A 20(33), 2561–2565 (2005)

    ADS  Google Scholar 

  56. Recati, A., Fedichev, P.O., Zwerger, W., von Delft, J., Zoller, P.: Atomic quantum dots coupled to a reservoir of a superfluid Bose-Einstein condensate. Phys. Rev. Lett. 94(4), 040404 (2005)

    ADS  Google Scholar 

  57. Fedichev, P.O., Fischer, U.R.: Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas. Phys. Rev. Lett. 91(24), 240407 (2003)

    ADS  MathSciNet  Google Scholar 

  58. Schmid, S., Harter, A., Denschlag, J.H.: Dynamics of a cold trapped ion in a Bose-Einstein condensate. Phys. Rev. Lett. 105(13), 133202 (2010)

    ADS  Google Scholar 

  59. Zipkes, C., Palzer, S., Sias, C., Kohl, M.: A trapped single ion inside a Bose-Einstein condensate. Nature 464(7287), 388–391 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12105097, 11905218, and supported by Scientific Research Fund of Hunan Provincial Education Department under Grant Nos. 20C0787, 20C0785, 19B206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, Y., Jia, C. et al. Quantum thermometry in electromagnetic field of cosmic string spacetime. Quantum Inf Process 22, 18 (2023). https://doi.org/10.1007/s11128-022-03768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03768-3

Keywords

Navigation