Skip to main content
Log in

Measurement-device-independent quantum protocol for E-payment based on blockchain

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a novel measurement-device-independent quantum protocol for electronic payment (E-payment), which can remove side channel attacks for the detectors. Especially, we use Bell states instead of three or more-qubit entangled states to reduce the complexity of quantum resources. Furthermore, we employ both quantum public-key encryption and blockchain technologies to ensure more perfect security properties. Compared with the previously proposed protocols, our proposed protocol has not only higher security but also better feasibility with current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  2. Shor, P.W.: Algorithms for quantum computation discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  3. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 021154 (1997)

    Article  ADS  Google Scholar 

  4. Zhang, Y., Deng, R.H., Liu, X., et al.: Outsourcing service fair payment based on blockchain and its applications in cloud computing. IEEE Trans. Serv. Comput. 14(4), 1152–1166 (2018)

    Article  Google Scholar 

  5. Coffie, C.P.K., Hongjiang, Z., Mensah, I.A., et al.: Determinants of FinTech payment services diffusion by SMEs in Sub-Saharan Africa: evidence from Ghana. Inf. Technol. Dev. 27(3), 539–560 (2021)

    Article  Google Scholar 

  6. Wen, X.J., Nie, Z.: An E-payment system based on quantum blind and group signature. Phys. Scr. 82(6), 5468–5478 (2010)

    Google Scholar 

  7. Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549–558 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(4), 1651–1657 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Shao, A.X., Zhang, J.Z., Xie, S.C.: An E-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 56(4), 1241–1248 (2017)

    Article  MATH  Google Scholar 

  10. Niu, X.F., Zhang, J.Z., Xie, S.C., et al.: A third-party E-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 57(8), 2563–2573 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tiliwalidi, K., Zhang, J.Z., Xie, S.C.: A multi-bank E-payment protocol based on quantum proxy blind signature. Int. J. Theor. Phys. 58(10), 3510–3520 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xie, S.C., Niu, X.F., Zhang, J.Z.: An improved quantum E-payment system. Int. J. Theor. Phys. 59(2), 445–453 (2020)

    Article  MathSciNet  Google Scholar 

  13. Gou, X., Shi, R., Gao, W., et al.: A novel quantum E-payment protocol based on blockchain. Quantum Inf. Process. 20(5), 1–17 (2021)

    Article  MathSciNet  Google Scholar 

  14. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lo, H.K., Curty, M., Qi, B.: Measurement device independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  16. Zhou, Z.R., Sheng, Y.B., Niu, P.H., et al.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63(3), 1–6 (2020)

    Article  ADS  Google Scholar 

  17. Curty, M., Xu, F., Cui, W., et al.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  18. Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A. 77(3), 032348 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bennett, C.H., Brassard, G.: Quantum public key distribution reinvented. ACM SIGACT News 18(4), 51–53 (1987)

    Article  Google Scholar 

  20. Paul, T.: Quantum computation and quantum information. Math. Struct. Comput. Sci. 17(6), 1115–1115 (2007)

    Article  MathSciNet  Google Scholar 

  21. Wang, S., Ouyang, L., Yuan, Y., et al.: Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst. 49(11), 2266–2277 (2019)

    Article  Google Scholar 

  22. Shi, R.H.: Anonymous quantum sealed-bid auction. IEEE Trans. Circuits Syst. II Express Briefs 69(2), 414–418 (2021)

    Google Scholar 

  23. Nofer, M., Gomber, P., Hinz, O., et al.: Blockchain. Bus. Inf. Syst. Eng. 59(3), 183–187 (2017)

    Article  Google Scholar 

  24. Zheng, Z., Xie, S., Dai, H.N., et al.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

    Article  Google Scholar 

  25. Liang, W., Zhang, D., Lei, X., et al.: Circuit copyright blockchain: blockchain-based homomorphic encryption for IP circuit protection. IEEE Trans. Emerg. Top. Comput. 9(3), 1410–1420 (2020)

    Article  Google Scholar 

  26. Boaron, A., Boso, G., Rusca, D., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190520 (2018)

    Article  Google Scholar 

  27. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  Google Scholar 

  28. Shi, R.H.: Useful equations about Bell states and their applications to quantum secret sharing. IEEE Commun. Lett. 24(2), 386–390 (2019)

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 61772001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E., Shi, Rh., Li, K. et al. Measurement-device-independent quantum protocol for E-payment based on blockchain. Quantum Inf Process 22, 40 (2023). https://doi.org/10.1007/s11128-022-03770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03770-9

Keywords

Navigation