Skip to main content
Log in

Quantum J-channels on Krein spaces

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider Krein spaces and completely J-positive maps between the algebras of bounded linear operators. We first give a Stinespring type representation for a completely J-positive map. We introduce the Choi J-matrix of a linear map and also establish the equivalence of Kraus J-decompositions and Choi J-matrices. We give the J-PPT criterion for separability of J-states and discuss the entanglement breaking condition of quantum J-channels and suggest to prove the J-PPT squared conjecture to solve the PPT squared conjecture. Finally, we gave a concrete example of a completely J-positive map and some examples of \(3 \otimes 3\) quantum J-states which are J-entangled and J-separable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Albeverio, S., Kuzhel, S.: PT-Symmetric Operators in Quantum Mechanics: Krein Spaces Methods, Non-Selfadjoint Operators in Quantum Physics, pp. 293–343. Wiley, Hoboken (2015)

    Book  MATH  Google Scholar 

  2. An, I.J., Ju, I., Heo, J.: Weyl type theorems for selfadjoint operators on Krein spaces. Filomat 32, 6001–6016 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. An, I.J., Ju, I.L., Heo, J.: J-selfadjoint Krein space operators and Aluthge transforms. Mediterr. J. Math. 18, 16 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. An, I.J., Ju, I.L., Heo, J.: Computation of Krein space numerical ranges of \(2 \times 2\) matrices (Submitted) (2022)

  5. Antoine, J.P., Ôta, S.: Unbounded GNS representations of *-algebra in a Krein space. Lett. Math. Phys. 18, 267–274 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bauml, S., Christandl, M., Horodecki, K., Winter, A.: Limitations on quantum key repeaters. Nat. Commun. 6, 6908 (2015)

    Article  ADS  Google Scholar 

  7. Chen, L., Yang, Yu., Tang, W.-S.: Positive-partial-transpose square conjecture for \(n = 3\). Phys. Rev. A 99, 012337 (2019)

    Article  ADS  Google Scholar 

  8. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choi, M.-D.: Positive linear maps, operator algebras and applications (Kingston, 1980). In: Proceedings of Symposium on Pure Mathematics, vol 38, Part 2, pp. 583–590. Amer. Math. Soc. (1982)

  10. Christandl, M., Müller-Hermes, A., Wolf, M.: When do composed maps become entanglement breaking? Ann. Henri Poincaré 20, 2295–2322 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dadashyan, K., Khoruzhii, S.: Field algebras in quantum theory with indefinite metric. Teoret. Mat. Fiz. 54, 57–77 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Dirac, P.: The physical interpretation of quantum mechanics. Proc. Roy. Soc. Lond. Ser. A 180, 1–40 (1942)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Felipe-Sosa, R., Felipe, R.: \(J\)-states and quantum channels between indefinite metric spaces. Quant. Inf. Process 21, 139 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quant. Inf. Comput. 10, 343–360 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Guterman, A., Lemos, R., Soares, G.: More on geometry of Krein space C-numerical range. Appl. Math. Comput. 352, 258–269 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Heisenberg, W.: Lee model and quantisation of non linear field equations. Nucl. Phys. 4, 532–563 (1957)

    Article  MATH  Google Scholar 

  17. Heo, J.: Completely multi-positive linear maps and representations on Hilbert \(C^*\)-modules. J. Oper. Theory 41, 3–22 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Heo, J., Belavkin, V., Ji, U.C.: Monotone quantum stochastic processes and covariant dynamical hemigroups. J. Funct. Anal. 261, 3345–3365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heo, J., Hong, J.P., Ji, U.C.: On KSGNS representations on Krein C*-modules. J. Math. Phys. 51, 053504 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hofmann, G.: An explicit realization of a GNS representation in a Krein-space. Publ. RIMS Kyoto Univ. 29, 267–287 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holevo, A.S.: Entanglement-breaking channels in infinite dimensions. Probl. Inf. Transm. 44, 171–184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Horodecki, M., Shor, P., Ruskai, M.: Entanglement breaking channels. Rev. Math. Phys. 15, 629–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jakóbczyk, L., Strocchi, F.: Euclidean formulation of quantum field theory without positivity. Commun. Math. Phys. 119, 529–541 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kaltenback, M., Skrepek, N.: Joint functional calculus for definitizable self-adjoint operators on Krein spaces. Integr. Equ. Oper. Theory 92, 36 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kennedy, M., Manor, N., Paulsen, V.: Composition of PPT maps. Quant. Inf. Comput. 18, 472–480 (2018)

    MathSciNet  Google Scholar 

  26. Kraus, K.: Operations and effects in the Hilbert space formulation of quantum theory. In: Foundations of Quantum Mechanics and Ordered Linear Spaces (Marburg, 1973). Lecture Notes in Physics, vol. 29, pp. 206–229. Springer (1974)

  27. Kuramochi, Y.: Entanglement-breaking channels with general outcome operator algebras. J. Math. Phys. 59, 102206 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Rahaman, M., Jaques, S., Paulsen, V.: Eventually entanglement breaking maps. J. Math. Phys. 59, 11 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruskai, M., Junge, M., Kribs, D., Hayden, P., Winter, A.: Banff Int. Operator Structures in Quantum Information Theory, Research Station Workshop (2012)

  30. Strocchi, F., Wightman, A.S.: Proof of charge selection rule in local relativistic quantum field theory. J. Math. Phys. 15, 2198–2224 (1974)

    Article  ADS  Google Scholar 

  31. Yngvason, J.: Remarks on the reconstruction theorem for field theories with indefinite metric. Rep. Math. Phys. 12, 57–64 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. Heo was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2020R1A4A3079066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeseong Heo.

Ethics declarations

Conflict of interest

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J. Quantum J-channels on Krein spaces. Quantum Inf Process 22, 16 (2023). https://doi.org/10.1007/s11128-022-03771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03771-8

Keywords

Mathematics Subject Classification

Navigation