Skip to main content
Log in

Detection of multiple trine ensemble

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In 1991, Peres and Wootters took an example of detecting the two-copy trine ensemble to demonstrate the nonlocal processing of quantum information (Phys Rev Lett 66:1119, 1991). We in this paper present a complete solution to the classic problem of detecting the N-copy trine ensemble with the minimum-error discrimination strategy. We construct the most general operators of a positive operator valued measure, from which the optimal detection of the N-copy trine ensemble can be derived. The states of the measurement operators are all entangled states, and the correct probability of detecting N-copy trine states tends to unit as the number N of the copies goes to infinite. Our results demonstrate “nonlocality without entanglement” in N-qubit pure states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be made on reasonable request.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Duan, L.-M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)

    Article  ADS  Google Scholar 

  6. Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  7. Peres, A., Wootters, W.K.: Optimal detection of quantum information. Phys. Rev. Lett. 66, 1119 (1991)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  10. Xu, G.-B., Wen, Q.-Y., Qin, S.-J., Yang, Y.-H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93, 032341 (2016)

    Article  ADS  Google Scholar 

  11. Croke, S., Barnett, S.M.: Difficulty of distinguishing product states locally. Phys. Rev. A 95, 012337 (2017)

    Article  ADS  Google Scholar 

  12. Demianowicz, M., Augusiak, R.: From unextendible product bases to genuinely entangled subspaces. Phys. Rev. A 98, 012313 (2018)

    Article  ADS  Google Scholar 

  13. Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)

    Article  ADS  Google Scholar 

  14. Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Peres, A.: Collective tests for quantum nonlocality. Phys. Rev. A 54, 2685 (1996)

    Article  ADS  Google Scholar 

  16. Brody, D., Meister, B.: Minimum decision cost for quantum ensembles. Phys. Rev. Lett. 76, 1 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ban, M., Yamazaki, K., Hirota, O.: Accessible information in combined and sequential quantum measurementson a binary-state signal. Phys. Rev. A 55, 22 (1997)

    Article  ADS  Google Scholar 

  18. Acłn, A., Bagan, E., Baig, M., Masanes, L., Munoz-Tapia, R.: Multiple-copy two-state discrimination with individual measurements. Phys. Rev. A 71, 032338 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)

    Article  ADS  Google Scholar 

  20. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  23. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wootters, W.K.: Distinguishing unentangled states with an unentangled measurement. Int. J. Quantum Inf. 4, 219 (2006)

    Article  MATH  Google Scholar 

  25. Chitambar, E., Hsieh, M.-H.: Revisiting the optimal detection of quantum information. Phys. Rev. A 88, 020302(R) (2013)

    Article  ADS  Google Scholar 

  26. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  27. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WH. Detection of multiple trine ensemble. Quantum Inf Process 22, 22 (2023). https://doi.org/10.1007/s11128-022-03772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03772-7

Keywords

Navigation