Abstract
We theoretically investigate tunable double optomechanically induced transparency (OMIT) controlled by an external force exerted on the double cavity optomechanical system. It is shown that this system could manifest single OMIT effect or double OMIT effect by adjusting the external force. More importantly, slow-fast light conversion can be realizable by controlling the external force. The influence of the system parameters such as the coupling strength between the two cavities and the decay rates on the output field is analyzed. This force-induced double transparency could be applicable for further optical manipulation and force-dependent quantum metrology.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
All data, models, and code generated or used during the study appear in the submitted article.
References
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)
Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express. 15(25), 17172–17205 (2007)
Kómár, P., Bennett, S.D., et al.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A. 87, 013839 (2013)
Wei, L.F., Liu, Y., Sun, C.P., et al.: Probing tiny motions of nanomechanical resonators: classical or quantum mechanical? Phys. Rev. Lett. 97(23), 237201 (2006)
Marquardt, F., Girvin, S.M.: Optomechanics. Physics. 2, 40 (2009)
Xiong, H., Wu, Y.: Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5, 031305 (2018)
Liu, Z.X., Wang, B., et al.: A proposed method to measure weak magnetic field based on a hybrid optomechanical system. Sci Rep. 7, 12521 (2017)
Bagci, T., Simonsen, A., Schmid, S., et al.: Optical detection of radio waves through a nanomechanical transducer. Nature. 507(7490), 81–85 (2014)
Gavartin, E., Verlot, P., Kippenberg, T.J.: A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat nanotechnol. 7(8), 509–514 (2012)
Stannigel, K., et al.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)
Stannigel, K., Rabl, P., Sørensen, A.S., et al.: Optomechanical transducers for quantum-information processing. Phys Rev. A. 84(4), 042341 (2011)
Jähne, K., Genes, C., et al.: Cavity-assisted squeezing of a mechanical oscillator. Phys. Rev. A. 79, 063819 (2009)
Kronwald, A., Marquardt, F., Clerk, A.A.: Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A. 88(6), 063833 (2013)
Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A. 91, 013834 (2015)
Bose, S., Jacobs, K., Knight, P.L.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A. 56(5), 4175 (1997)
Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103(21), 213603 (2009)
Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A. 89, 014302 (2014)
He, B., Yang, L., et al.: Transmission nonreciprocity in a mutually coupled circulating structure. Phys. Rev. Lett. 120, 203904 (2018)
Huang, S., Agarwal, G.S.: Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity. Phys. Rev. A. 120, 033807 (2009)
Wang, T., Bai, C.H., et al.: Optomechanically induced Faraday and splitting effects in a double-cavity optomechanical system. Phys. Rev. A. 104, 013721 (2021)
Weis, S., Rivière, R., et al.: Optomechanically induced transparency. Science. 330(6010), 1520–1523 (2010)
Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A. 81(4), 041803 (2010)
Yan, X.B.: Optomechanically induced transparency and gain. Phys. Rev. A. 101(4), 043820 (2020)
Shahidani, S., Naderi, M.H., Soltanolkotabi, M.: Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A. 88(5), 053813 (2013)
Wang, H., Gu, X., Liu, et al.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A. 90, 023817 (2014)
Zhang, X.Y., Zhou, Y.H., et al.: Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical systems. Phys. Rev. A. 98, 033832 (2018)
Zhan, X.G., Si, L.G., et al.: Tunable slow light in a quadratically coupled optomechanical system. J. Phys. B: At. Mol. Opt. Phys. 46, 025501 (2013)
Bai, C., Hou, B.P., et al.: Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir. Phys. Rev. A. 93, 043804 (2016)
Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A. 92, 023846 (2015)
Biag, M., Ghaffar, A., et al.: Slow light effect in hybrid optomechanical system. Int. J. Quantum Chem. 122(1), e26814 (2022)
Fiore, V., Yang, Y., Kuzyk, M.C., et al.: Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107(13), 133601 (2011)
Merklein, M., Stiller, B., Eggleton, B.J.: Brillouin-based light storage and delay techniques. J. Opt. 20(8), 083003 (2018)
Wang, X.Y., Si, L.G., Lu, X.H., et al.: Optomechanically tuned Fano resonance and slow light in a quadratically coupled optomechanical system with membranes. J. Phys. B: At. Mol. Opt. Phys. 53(23), 235402 (2020)
Chang, D.E., et al.: Slowing and stopping light using an optomechanical crystal array. New J. Phys. 13, 023003 (2011)
Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)
Zhang, Z., Yang, J., He, X., et al.: All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Opt. Commun. 425, 196–203 (2018)
Wu, Q., Zhang, J.Q., Wu, J.H., et al.: Tunable multi-channel inverse optomechanically induced transparency and its applications. Opt. Express. 23(14), 18534–18547 (2015)
Zhang, J.Q., Li, Y., Feng, M., et al.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86(5), 053806 (2012)
Wang, Q., Zhang, J.Q., Ma, P.C., Yao, Y.C., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91, 063827 (2015)
Gu, W.J., Yi, Z.: Double optomechanically induced transparency in coupled-resonator system. Opt. Communications. 333, 261–264 (2014)
Qian, Z., Zhao, M.M., et al.: Tunable double optomechanically induced transparency in photonically and phononically coupled optomechanical systems. Opt. Express. 25(26), 33097–33112 (2017)
Ma, P.C., Zhang, J.Q., et al.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A. 90, 043825 (2014)
Rao, S., Huang, Y.X.: Wide-range precision temperature measurement with optomechanically induced transparency in a double-cavity optomechanical system. Opt. Express. 27(3), 2949–2961 (2019)
Rao, S., Huang, Y.X.: Generation and enhancement of sum sideband in a parity-time-symmetric optomechanical system. J. Phys. B: At. Mol. Opt. Phys. 53, 155403 (2020)
Rao, S., Huang, Y.X.: Multi-channel optomechanically induced amplification in a parity-time-symmetric Laguerre-Gaussian rovibrational-cavity system. Eur. Phys. J. D. 74, 233 (2020)
Wu, Z., Luo, R.H., et al.: Force-induced transparency and conversion between slow and fast light in optomechanics. Phys. Rev. A. 96, 033832 (2017)
Lü, X.Y., Jing, H., Ma, J.Y., et al.: PT-symmetry-breaking chaos in optomechanics. Phys. Rev. Lett. 114(25), 253601 (2015)
Lü, X.Y., Wu, Y., et al.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 144, 093602 (2015)
Boyd, R.W.: Nonlinear Optics. Academic Press, Amsterdam, Boston, Heidelberg, London, New York (2008)
Smith, D.D., Chang, H., Fuller, K.A., et al.: Coupled-resonator-induced transparency. Phys. Rev. A. 69(6), 063804 (2004)
Tarhan, D., Huang, S., Müstecaplıo ğlu, Ö. E.: Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A. 87, 013824 (2013)
Gu, K.H., Yan, X.B., et al.: Tunable slow and fast light in an atom-assisted optomechanical system. Opt. Communications. 338, 569–573 (2015)
Acknowledgements
This work was supported by the Open Foundation for CAS Key Laboratory of Quantum Information at the Chinese Academy of Sciences (Grants Nos. KQI201802 and KQI201), and the National Natural Science Foundation of China (Grants Nos. 12204158))
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, G., Huang, YX. & Rao, S. Tunable force-induced double window transparency in cavity optomechanical system. Quantum Inf Process 22, 29 (2023). https://doi.org/10.1007/s11128-022-03773-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03773-6