Skip to main content

Advertisement

Log in

Tunable force-induced double window transparency in cavity optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We theoretically investigate tunable double optomechanically induced transparency (OMIT) controlled by an external force exerted on the double cavity optomechanical system. It is shown that this system could manifest single OMIT effect or double OMIT effect by adjusting the external force. More importantly, slow-fast light conversion can be realizable by controlling the external force. The influence of the system parameters such as the coupling strength between the two cavities and the decay rates on the output field is analyzed. This force-induced double transparency could be applicable for further optical manipulation and force-dependent quantum metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)

    ADS  Google Scholar 

  2. Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express. 15(25), 17172–17205 (2007)

    ADS  Google Scholar 

  3. Kómár, P., Bennett, S.D., et al.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A. 87, 013839 (2013)

    ADS  Google Scholar 

  4. Wei, L.F., Liu, Y., Sun, C.P., et al.: Probing tiny motions of nanomechanical resonators: classical or quantum mechanical? Phys. Rev. Lett. 97(23), 237201 (2006)

    ADS  Google Scholar 

  5. Marquardt, F., Girvin, S.M.: Optomechanics. Physics. 2, 40 (2009)

    Google Scholar 

  6. Xiong, H., Wu, Y.: Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5, 031305 (2018)

    ADS  Google Scholar 

  7. Liu, Z.X., Wang, B., et al.: A proposed method to measure weak magnetic field based on a hybrid optomechanical system. Sci Rep. 7, 12521 (2017)

    ADS  Google Scholar 

  8. Bagci, T., Simonsen, A., Schmid, S., et al.: Optical detection of radio waves through a nanomechanical transducer. Nature. 507(7490), 81–85 (2014)

    ADS  Google Scholar 

  9. Gavartin, E., Verlot, P., Kippenberg, T.J.: A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat nanotechnol. 7(8), 509–514 (2012)

    ADS  Google Scholar 

  10. Stannigel, K., et al.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)

    ADS  Google Scholar 

  11. Stannigel, K., Rabl, P., Sørensen, A.S., et al.: Optomechanical transducers for quantum-information processing. Phys Rev. A. 84(4), 042341 (2011)

    ADS  Google Scholar 

  12. Jähne, K., Genes, C., et al.: Cavity-assisted squeezing of a mechanical oscillator. Phys. Rev. A. 79, 063819 (2009)

    ADS  Google Scholar 

  13. Kronwald, A., Marquardt, F., Clerk, A.A.: Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A. 88(6), 063833 (2013)

    ADS  Google Scholar 

  14. Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A. 91, 013834 (2015)

    ADS  Google Scholar 

  15. Bose, S., Jacobs, K., Knight, P.L.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A. 56(5), 4175 (1997)

    ADS  Google Scholar 

  16. Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103(21), 213603 (2009)

    ADS  Google Scholar 

  17. Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A. 89, 014302 (2014)

    ADS  Google Scholar 

  18. He, B., Yang, L., et al.: Transmission nonreciprocity in a mutually coupled circulating structure. Phys. Rev. Lett. 120, 203904 (2018)

    ADS  Google Scholar 

  19. Huang, S., Agarwal, G.S.: Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity. Phys. Rev. A. 120, 033807 (2009)

    ADS  Google Scholar 

  20. Wang, T., Bai, C.H., et al.: Optomechanically induced Faraday and splitting effects in a double-cavity optomechanical system. Phys. Rev. A. 104, 013721 (2021)

    ADS  Google Scholar 

  21. Weis, S., Rivière, R., et al.: Optomechanically induced transparency. Science. 330(6010), 1520–1523 (2010)

    ADS  Google Scholar 

  22. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A. 81(4), 041803 (2010)

    ADS  Google Scholar 

  23. Yan, X.B.: Optomechanically induced transparency and gain. Phys. Rev. A. 101(4), 043820 (2020)

    ADS  Google Scholar 

  24. Shahidani, S., Naderi, M.H., Soltanolkotabi, M.: Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A. 88(5), 053813 (2013)

    ADS  Google Scholar 

  25. Wang, H., Gu, X., Liu, et al.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A. 90, 023817 (2014)

  26. Zhang, X.Y., Zhou, Y.H., et al.: Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical systems. Phys. Rev. A. 98, 033832 (2018)

    ADS  Google Scholar 

  27. Zhan, X.G., Si, L.G., et al.: Tunable slow light in a quadratically coupled optomechanical system. J. Phys. B: At. Mol. Opt. Phys. 46, 025501 (2013)

    ADS  Google Scholar 

  28. Bai, C., Hou, B.P., et al.: Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir. Phys. Rev. A. 93, 043804 (2016)

    ADS  Google Scholar 

  29. Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A. 92, 023846 (2015)

    ADS  Google Scholar 

  30. Biag, M., Ghaffar, A., et al.: Slow light effect in hybrid optomechanical system. Int. J. Quantum Chem. 122(1), e26814 (2022)

    Google Scholar 

  31. Fiore, V., Yang, Y., Kuzyk, M.C., et al.: Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107(13), 133601 (2011)

    ADS  Google Scholar 

  32. Merklein, M., Stiller, B., Eggleton, B.J.: Brillouin-based light storage and delay techniques. J. Opt. 20(8), 083003 (2018)

    ADS  Google Scholar 

  33. Wang, X.Y., Si, L.G., Lu, X.H., et al.: Optomechanically tuned Fano resonance and slow light in a quadratically coupled optomechanical system with membranes. J. Phys. B: At. Mol. Opt. Phys. 53(23), 235402 (2020)

    ADS  Google Scholar 

  34. Chang, D.E., et al.: Slowing and stopping light using an optomechanical crystal array. New J. Phys. 13, 023003 (2011)

    ADS  Google Scholar 

  35. Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)

    ADS  Google Scholar 

  36. Zhang, Z., Yang, J., He, X., et al.: All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Opt. Commun. 425, 196–203 (2018)

    ADS  Google Scholar 

  37. Wu, Q., Zhang, J.Q., Wu, J.H., et al.: Tunable multi-channel inverse optomechanically induced transparency and its applications. Opt. Express. 23(14), 18534–18547 (2015)

    ADS  Google Scholar 

  38. Zhang, J.Q., Li, Y., Feng, M., et al.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86(5), 053806 (2012)

    ADS  Google Scholar 

  39. Wang, Q., Zhang, J.Q., Ma, P.C., Yao, Y.C., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91, 063827 (2015)

    ADS  Google Scholar 

  40. Gu, W.J., Yi, Z.: Double optomechanically induced transparency in coupled-resonator system. Opt. Communications. 333, 261–264 (2014)

    ADS  Google Scholar 

  41. Qian, Z., Zhao, M.M., et al.: Tunable double optomechanically induced transparency in photonically and phononically coupled optomechanical systems. Opt. Express. 25(26), 33097–33112 (2017)

    ADS  Google Scholar 

  42. Ma, P.C., Zhang, J.Q., et al.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A. 90, 043825 (2014)

    ADS  Google Scholar 

  43. Rao, S., Huang, Y.X.: Wide-range precision temperature measurement with optomechanically induced transparency in a double-cavity optomechanical system. Opt. Express. 27(3), 2949–2961 (2019)

    ADS  Google Scholar 

  44. Rao, S., Huang, Y.X.: Generation and enhancement of sum sideband in a parity-time-symmetric optomechanical system. J. Phys. B: At. Mol. Opt. Phys. 53, 155403 (2020)

    ADS  Google Scholar 

  45. Rao, S., Huang, Y.X.: Multi-channel optomechanically induced amplification in a parity-time-symmetric Laguerre-Gaussian rovibrational-cavity system. Eur. Phys. J. D. 74, 233 (2020)

    ADS  Google Scholar 

  46. Wu, Z., Luo, R.H., et al.: Force-induced transparency and conversion between slow and fast light in optomechanics. Phys. Rev. A. 96, 033832 (2017)

    ADS  Google Scholar 

  47. Lü, X.Y., Jing, H., Ma, J.Y., et al.: PT-symmetry-breaking chaos in optomechanics. Phys. Rev. Lett. 114(25), 253601 (2015)

    ADS  Google Scholar 

  48. Lü, X.Y., Wu, Y., et al.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 144, 093602 (2015)

    ADS  Google Scholar 

  49. Boyd, R.W.: Nonlinear Optics. Academic Press, Amsterdam, Boston, Heidelberg, London, New York (2008)

    Google Scholar 

  50. Smith, D.D., Chang, H., Fuller, K.A., et al.: Coupled-resonator-induced transparency. Phys. Rev. A. 69(6), 063804 (2004)

    ADS  Google Scholar 

  51. Tarhan, D., Huang, S., Müstecaplıo ğlu, Ö. E.: Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A. 87, 013824 (2013)

  52. Gu, K.H., Yan, X.B., et al.: Tunable slow and fast light in an atom-assisted optomechanical system. Opt. Communications. 338, 569–573 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Foundation for CAS Key Laboratory of Quantum Information at the Chinese Academy of Sciences (Grants Nos. KQI201802 and KQI201), and the National Natural Science Foundation of China (Grants Nos. 12204158))

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Xia Huang or Shi Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Huang, YX. & Rao, S. Tunable force-induced double window transparency in cavity optomechanical system. Quantum Inf Process 22, 29 (2023). https://doi.org/10.1007/s11128-022-03773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03773-6

Keywords