Skip to main content

Advertisement

Log in

Electron-scattering-induced entanglement between two atoms placed near the zigzag edge of a phosphorene ribbon

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the present work, the scattering of the edge-state electrons from two similar two-level atoms located as impurities near the two sites on the zigzag edge of a phosphorene ribbon has been studied theoretically with a focus on the production of entanglement between the impurities. To this end, it is assumed that the electrons are traveling parallel to the zigzag edge of a phosphorene ribbon and the edge states have been used to describe the state of these mobile electrons. Also, it is presumed that the incident electrons interact with the electric dipole of the scatterer atoms. Then, the general scattering theory based on the Lippmann–Schwinger equation has been applied along with the Green function approach to calculate the transition matrix elements and consequently the transmission and reflection probabilities of the mobile electrons. It has been shown that the problem can be reduced to the scattering of electrons along a one-dimensional chain lying along the zigzag edge of the ribbon. We then show that the scattering process leads to creation of a quantum correlation between the similar atomic impurities. Concurrence has been calculated as a measure of the produced entanglement, and its dependence on the energy of the electrons as well as the interaction strengths has been investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jaeger, L., Switzerland, B.: The second quantum revolution: from entanglement to quantum computing and other super technolegies. Springer, Switzerland (2018)

    Google Scholar 

  2. Duarte, F.J.: Fundamentals of quantum entanglement. Institute of Physics Publishing, London (2019)

    MATH  Google Scholar 

  3. Mishima, M., Hayashib, M., Lin, S.H.: Entanglement in scattering processes. Phys. Lett. A 333, 371 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Ghanbari-Adivi, E., Soltani, M., Ebtekarnasab, H.: Entanglement generation in scattering of particles from spin impurities. Eur. Phys. J. D 67, 118 (2013)

    ADS  MATH  Google Scholar 

  5. Amini, M., Soltani, M., Ghanbari-Adivi, E., Sharbafiun, M.: Two-impurity entanglement generation by electron scattering in zigzag phosphorene nanoribbons. Quant. Inf. Process. 18, 78 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Karlsson, E.B.: Quantum entanglement in low-energy neutron-proton scattering and its possible consequences. Phys. Scr. 95, 025003 (2020)

    ADS  Google Scholar 

  7. Kharzeev, D.E., Levin, E.: Deep inelastic scattering as a probe of entanglement: confronting experimental data. Phys. Rev. D 104, L031503 (2021)

    ADS  Google Scholar 

  8. Rudolph, H., Hornberger, K., Stickler, B.A.: Entangling levitated nanoparticles by coherent scattering. Phys. Rev. A 101, 011804(R) (2020)

    ADS  Google Scholar 

  9. Wallace, P.R.: The band theory of graphite. Phys. Rev. B 71, 622 (1947)

    ADS  MATH  Google Scholar 

  10. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    ADS  Google Scholar 

  11. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: New insight into the graphene based films prepared from carbon fibers. Nature 446, 7131 (2007)

    Google Scholar 

  12. Geim, A.K.: Graphene: status and prospects. Science 324, 1530 (2009)

    ADS  Google Scholar 

  13. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)

    ADS  Google Scholar 

  14. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014)

    Google Scholar 

  15. Koenig, S.P., Doganov, R.A., Schmidt, H., Neto, A.H.C., Özyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)

    ADS  Google Scholar 

  16. Wang, T., Park, M., Yu, Q., Zhang, J., Yang, Y.: Stability and synthesis of 2D metals and alloys: a review. Mater. Today Adv. 8, 100092 (2020)

    Google Scholar 

  17. Rodin, A.S., Carvalho, A., Neto, A.H.C.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014)

    ADS  Google Scholar 

  18. Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)

    ADS  Google Scholar 

  19. Li, C., Xie, Z., Chen, Z., Cheng, N., Wang, J., Zhu, G.: Tunable bandgap and optical properties of black phosphorene nanotubes. Materials 11, 304 (2018)

    ADS  Google Scholar 

  20. Du, J., Zhang, M., Guo, Z., Chen, J., Zhu, X., Hu, G., Peng, P., Zheng, Z., Zhang, H.: Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017)

    ADS  Google Scholar 

  21. Ezawa, M.: Topological origin of quasi-flat edge band in phosphorene. New J. Phys. 16, 115004 (2014)

    ADS  Google Scholar 

  22. Rezaei, M., Karbaschi, H., Amini, M., Soltani, M., Rashedi, G.: Thermoelectric properties of armchair phosphorene nanoribbons in the presence of vacancy-induced impurity band. Nanotechnology 32, 375704 (2021)

    Google Scholar 

  23. Wu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., Feng, Y.P.: Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B 92, 035436 (2015)

    ADS  Google Scholar 

  24. Maity, A., Singh, A., Sen, P., Kibey, A., Kshirsagar, A., Kanhere, D.G.: Structural, electronic, mechanical, and transport properties of phosphorene nanoribbons: negative differential resistance behavior. Phys. Rev. B 94, 075422 (2016)

    ADS  Google Scholar 

  25. Xie, F., Fan, Z.Q., Zhang, X.J., Liu, J.P., Wang, H.Y., Liu, K., Yu, J.H., Long, M.Q.: Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Org. Electr. 42, 21 (2017)

    Google Scholar 

  26. Amini, M., Soltani, M., Ghanbari-Adivi, E., Sharbafiun, M.: Tunable transmission due to defects in zigzag phosphorene nanoribbons. EPL 125, 67001 (2019)

    ADS  MATH  Google Scholar 

  27. Amini, M., Soltani, M.: Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green’s function method. J. Phys.: Condens. Matter 31, 215301 (2019)

    ADS  Google Scholar 

  28. Li, L.L., Peeters, F.M.: Quantum transport in defective phosphorene nanoribbons: effects of atomic vacancies. Phys. Rev. B 97, 075414 (2018)

    ADS  Google Scholar 

  29. Shah, N.A., Li, L.L., Mosallanejad, V., Peeters, F.M., Guo, G.P.: Transport characteristics of multi-terminal pristine and defective phosphorene systems. Nanotechnology 27, 455705 (2019)

    Google Scholar 

  30. Rafie, M., Daeimohammad, M., Soltani, M., Ghanbari-Adivi, E.: Scattering of edge-state electrons from a two-level atom located near the zigzag edge of a phosphorene nanoribbon. Solid. State. Commun. 345, 114687 (2022)

    Google Scholar 

  31. Cai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.W.: Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199 (2016)

    Google Scholar 

  32. Hunt, R.J., Szyniszewski, M., Prayogo, G.I., Maezono, R., Drummond, N.D.: Quantum Monte Carlo calculations of energy gaps from first principles. Phys. Rev. B 98, 075122 (2018)

    ADS  Google Scholar 

  33. Kheirabadi, N.: Current induced by a tilted magnetic field in phosphorene under terahertz laser radiation. Phys. Rev. B 103, 235429 (2021)

    ADS  Google Scholar 

  34. Rudenko, A.N., Katsnelson, M.I.: Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89, 201408 (2014)

    ADS  Google Scholar 

  35. Hanlon, D., Backes, C., Doherty, E., Cucinotta, C.S., Berner, N.C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q.M., McEvoy, N., Blau, W.J., Wang, J., Abellan, G., Hauke, F., Hirsch, A., Sanvito, S., O’Regan, D.D., Duesberg, G.S., Nicolosi, V., Coleman, J.N.: Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015)

    ADS  Google Scholar 

  36. Yasaei, P., Kumar, B., Foroozan, T., Wang, C., Asadi, M., Tuschel, D., Indacochea, J.E., Klie, R.F., Khojin, A.S.: High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887 (2015)

    Google Scholar 

  37. Liu, X.L., Hug, D., Vandersypen, L.M.: Gate-defined graphene double quantum dot and excited state spectroscopy. Nano Lett. 10, 1623 (2010)

    ADS  Google Scholar 

  38. Baines, D.Y., Meunier, T., Mailly, D., Wieck, A.D., Bäuerle, C., Saminadayar, L., Cornaglia, P.S., Usaj, G., Balseiro, C.A., Feinberg, D.: Transport through side-coupled double quantum dots: from weak to strong interdot coupling. Phys. Rev. B 85, 195117 (2012)

    ADS  Google Scholar 

  39. Yudson, V.I., Reineker, P.: Multiphoton scattering in a one-dimensional waveguide with resonant atoms. Phys. Rev. A 78, 052713 (2008)

    ADS  Google Scholar 

  40. Rephaeli, E., Kocabas, S.E., Fan, S.: Few-photon transport in a waveguide coupled to a pair of colocated two-level atoms. Phys. Rev. A 84, 063832 (2011)

    ADS  Google Scholar 

  41. Longhi, S.: Quantum decay in a topological continuum. Phys. Rev. A 100, 022123 (2019)

    ADS  MathSciNet  Google Scholar 

  42. Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, London (2007)

    MATH  Google Scholar 

  43. Banerjee, S.: Open quantum systems: dynamics of nonclassical evolution. Springer, Singapore (2018)

    MATH  Google Scholar 

  44. Amini, M., Soltani, M., Sharbafiun, M.: Vacancy-induced Fano resonances in zigzag phosphorene nanoribbons. Phys. Rev. B. 99, 085403 (2019)

    ADS  Google Scholar 

  45. Ahmadi, I., Soltani, M., Rashedi, G.: Analytical calculation of scattering from spin impurity and entanglement generation for edge states of Kane-Mele model. Physica E 139, 115127 (2022)

    Google Scholar 

  46. Ghanbari-Adivi, E., Soltani, M., Sheikhali, M.: Entanglement generation due to the Klein tunneling in a graphene sheet. Quant. Inf. Process. 15, 2377 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghanbari-Adivi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinnakhaei, M., Soltani, M., Daeimohammad, M. et al. Electron-scattering-induced entanglement between two atoms placed near the zigzag edge of a phosphorene ribbon. Quantum Inf Process 22, 32 (2023). https://doi.org/10.1007/s11128-022-03785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03785-2

Keywords