Skip to main content
Log in

An improved efficient identity-based quantum signature scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Digital signature is the foundation of data integrity protection and non-repudiation service and plays an significant role in modern cryptosystems. Many academics have proposed various signature methods. However, most of them are not resilient to quantum attacks. In this paper, we present an improved public-key quantum signature method based on identity. The public key generation in our method provides the signer’s secret key based on the identity of the signer. The signer can use her secret key and the verifier’s secret parameters to generate a quantum signature. The signer and verifier do not need to exchange secret keys before signing a message. The technique employs quantum mechanics’ physical properties to ensure its unforgeability, undeniability and unconditional security. The efficiency of our scheme is improved significantly compared to several existing quantum signature protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint arXiv:quant-ph/0105032 (2001)

  5. Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pp. 449–458 (2002). IEEE

  6. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  7. Zhang, L., Sun, H.-W., Zhang, K.-J., Jia, H.-Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained cnot encryption. Quantum Inf. Process. 16(3), 1–15 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Song, Y., Li, Z., Li, Y.: A dynamic multiparty quantum direct secret sharing based on generalized ghz states. Quantum Inf. Process. 17(9), 1–21 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Niu, X.-F., Ma, W.-P., Chen, B.-Q., Liu, G., Wang, Q.-Z.: A quantum proxy blind signature scheme based on superdense coding. Int. J. Theor. Phys. 59(4), 1121–1128 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zheng, T., Chang, Y., Zhang, S.-B.: Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit ghz states. Quantum Inf. Process. 19(5), 1–15 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pp. 449–458 (2002). IEEE

  12. Li, Q., Chan, W.H., Long, D.-Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  14. Zhang, K.-J., Zhang, W.-W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Xin, X., He, Q., Wang, Z., Yang, Q., Li, F.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)

    Article  ADS  Google Scholar 

  16. Ding, L., Xin, X., Yang, Q., Sang, Y.: Security analysis and improvements of xor arbitrated quantum signature-based ghz state. Mod. Phys. Lett. A 37(02), 2250008 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jiang, D.-H., Hu, Q.-Z., Liang, X.-Q., Xu, G.-B.: A trusted third-party e-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, D.-H., Wang, J., Liang, X.-Q., Xu, G.-B., Qi, H.-F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xia, C., Li, H., Hu, J.: A novel quantum blind signature protocol based on five-particle entangled state. Eur. Phys. J. Plus 136(2), 1–12 (2021)

    Article  ADS  Google Scholar 

  20. He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  21. Chen, F.-L., Liu, W.-F., Chen, S.-G., Wang, Z.-H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(1), 1–14 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Xin, X., Wang, Z., Yang, Q.: Identity-based quantum signature based on bell states. Optik 200, 163388 (2020)

    Article  ADS  Google Scholar 

  23. Xin, X., Wang, Z., Yang, Q.: Identity-based quantum signature scheme with strong security. Opt. Quantum Electron. 51(12), 1–13 (2019)

    Article  Google Scholar 

  24. Cerruti, U.: One time pad and the short key dream. arXiv preprint arXiv:2108.06981 (2021)

  25. Yin, H.-L., Fu, Y., Li, C.-L., Weng, C.-X., Li, B.-H., Gu, J., Lu, Y.-S., Chen, Z.-B.: Experimental quantum secure network with digital signatures and encryption. arXiv preprint arXiv:2107.14089 (2021)

  26. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bravyi, S., Maslov, D.: Hadamard-free circuits expose the structure of the clifford group. IEEE Trans. Inf. Theory 67(7), 4546–4563 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Carstens, T.V., Ebrahimi, E., Tabia, G.N., Unruh, D.: Relationships between quantum ind-cpa notions. In: Theory of Cryptography Conference, pp. 240–272 (2021). Springer

  29. Goldreich, O.: Foundations of cryptography: basic applications. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  30. Pan, J., Yang, L.: Quantum public-key encryption with information theoretic security. arXiv preprint arXiv:1006.0354 (2010)

  31. Li, Y., Chong, X., Bao, L.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 62272120, 62106030); the Technology Innovation and Application Development Projects of Chongqing (Grant No. cstc2021jscx-gksbX0032, cstc2021jscx-gksbX0029); the Research Program of Basic Research and Frontier Technology of Chongqing (Grant No. cstc2021jcyj-msxmX0530); the Key R &D plan of Hainan Province (Grant No. ZDYF2021GXJS006); the Educational Commission of Hunan Province of China (No.20C0563).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongfei Huang or Guangxia Xu.

Ethics declarations

Conflict of interest

The authors state that they have not known competing financial interests or personal connections that may seem to have influenced the work described in this study.

Data availability

All data generated or analyzed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Xu, G. & Song, X. An improved efficient identity-based quantum signature scheme. Quantum Inf Process 22, 36 (2023). https://doi.org/10.1007/s11128-022-03786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03786-1

Keywords

Navigation