Skip to main content
Log in

The application of weight parity error correction in quantum codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Weight parity error correction (WPEC) is an error-correction scheme that can correct high-weight Pauli errors. Still, it was initially shown to apply only to Steane and Golay codes. In this work, we prove that the WPEC scheme is appropriate for concatenated codes constructed from two classes of quantum codes, quantum quadratic-residue codes and quantum stabilizer codes from self-orthogonal cyclic codes. We generalize the implementation of the WPEC technique to nonbinary quantum codes and provide an application using WPEC for the \([[121, 1, 25]]_3\) concatenated code. We also show that the WPEC may not be applicable for some quantum codes with specific parameters through an example of the [[15, 7]] code over \({{\mathbb {F}}}_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6(2), 97–165 (2006)

  3. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Remarkable degenerate quantum stabilizer codes derived from duadic codes. In: 2006 IEEE International Symposium on Information Theory, pp. 1105–1108, (2006)

  4. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(\rm GF (4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chamberland, C., Cross, A.W.: Flag fault-tolerant error correction with arbitrary distance codes. Quantum 2, 53 (2018)

    Article  Google Scholar 

  7. Chamberland, C., Cross, A.W.: Fault-tolerant magic state preparation with flag qubits. Quantum 3, 143 (2019)

    Article  Google Scholar 

  8. Chamberland, C., Noh, K.: Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits. npj Quant. Inform. 6, 1–12 (2020)

    Google Scholar 

  9. Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Overhead analysis of universal concatenated quantum codes. Phys. Rev. A 95(2), 022313 (2017)

    Article  ADS  Google Scholar 

  10. Chamberland, C., Kubica, A., Yoder, T., Zhu, G.: Triangular color codes on trivalent graphs with flag qubits. New J. Phys. 22(2), 023019 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chamberland, C., Zhu, G., Yoder, T.J., Hertzberg, J.B., Cross, A.W.: Topological and subsystem codes on low-degree graphs with flag qubits. Phys. Rev. X 10, 011022 (2020)

    Google Scholar 

  12. Chao, R., Reichardt, B.: Quantum error correction with only two extra qubits. Phys. Rev. Lett. 121, 050502 (2018)

    Article  ADS  Google Scholar 

  13. Chao, R., Reichardt, B.W.: Flag fault-tolerant error correction for any stabilizer code. PRX Quant. 1, 010302 (2020)

    Article  Google Scholar 

  14. Cleve, R.: Quantum stabilizer codes and classical linear codes. Phys. Rev. A 55(6), 4054–4059 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Grassl, M., Beth, T., Rötteler, M.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int. J. Found. Comput. Sci. 14(5), 757–775 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, (2003)

  17. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knill, E.: Scalable quantum computing in the presence of large detected-error rates. Phys. Rev. A 71, 42322 (2003)

    Article  Google Scholar 

  19. Lao, L., Almudever, C.G.: Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits. Phys. Rev. A 101, 032333 (2020)

    Article  ADS  Google Scholar 

  20. Lau, J., Lim, K.H., Shrotriya, H., Kwek, L.C.: Nisq computing: Where are we and where do we go? AAPPS Bull. 32(1), 1–30 (2022)

    Article  Google Scholar 

  21. Luo, L., Ma, Z., Wei, Z., Leng, R.: Non-binary entanglement-assisted quantum stabilizer codes. Sci. China (Information Sciences) 4, 210–223 (2017)

    Google Scholar 

  22. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, volume I and II. North-Holland Mathematical Library, (1981)

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, (2011)

  24. Reichardt, B.W.: Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits. Quant. Sci. Technol. 6, 015007 (2020)

    Article  ADS  Google Scholar 

  25. Sheng, Y., Ding, L., Wang, H., Wang, Y., Wang, S.: Based on quantum topological stabilizer color code morphism neural network decoder. Quant. Eng. 2022, 9638108 (2022)

  26. Shor, P.W.: Fault-tolerant quantum computation. Proceedings of 37th Conference on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, California, 1996), pp. 56-65, (1996)

  27. Steane, A.M.: Active stabilization, quantum computation, and quantum state synthesis. Phys. Rev. Lett. 78, 2252–2255 (1997)

    Article  ADS  Google Scholar 

  28. Steane, A.M.: Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68(4), 042322 (2003)

    Article  ADS  Google Scholar 

  29. Tansuwannont, T., Leung, D.: Fault-tolerant quantum error correction using error weight parities. Phys. Rev. A 104, 042410 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  30. Tansuwannont, T., Chamberland, C., Leung, D.: Flag fault-tolerant error correction, measurement, and quantum computation for cyclic calderbank-shor-steane codes. Phys. Rev. A 101, 012342 (2020)

    Article  ADS  Google Scholar 

  31. Xue, Y., Wang, H., Tian, Y., Wang, Y., Wang, S. Wang, Yuxuanand: Quantum information protection scheme based on reinforcement learning for periodic surface codes. Quant. Eng. 2022, 7643871 (2022)

Download references

Acknowledgements

The authors are grateful to the anonymous referees for careful reading and for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Key R &D Program of China (No. 2021YFB3100100) and the National Natural Science Foundation of China (Grants Nos. 61972413,61901525,62002385).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Liu, Y. & Ma, Z. The application of weight parity error correction in quantum codes. Quantum Inf Process 22, 50 (2023). https://doi.org/10.1007/s11128-022-03790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03790-5

Keywords

Navigation