Skip to main content
Log in

Non-binary quantum synchronizable codes based on cyclic codes over \(\textrm{F}_q\)

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum synchronizable codes (QSCs) are special quantum error-correcting codes which can be used to correct the effects of quantum noise on qubits and misalignment in block synchronization. In this paper, we first construct a new class of QSCs from cyclic codes of length \(2^n\), by using the cyclotomic cosets. Besides, we give another new class of QSCs based on BCH codes of length an integer N satisfying some certain conditions. The synchronization capabilities of all these QSCs are always the upper bound. In addition, the lower bounds of correcting bit errors and phase errors for these codes are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  2. Steane, A.: Multiple particle interference and quantum error correction. Proc. Math. Phys. Eng. Sci. 452, 2551–2557 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1106 (1996)

    Article  ADS  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Int. Symp. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge, New York (2011)

  6. Lidar, D.A., Brun, T.A.: Quantum Error Correction. Cambridge, New York (2013)

  7. Fujiwara, Y.: Block synchronization for quantum information. Phys. Rev. A 87(2), 022344 (2013)

    Article  ADS  Google Scholar 

  8. Fujiwara, Y., Tonchev, V.D., Wong, T.W.H.: Algebraic techniques in designing quantum synchronizable codes. Phys. Rev. A 88(1), 012318 (2013)

    Article  ADS  Google Scholar 

  9. Fujiwara, Y., Vandendriessche, P.: Quantum synchronizable codes from finite geometries. IEEE Trans. Inf. Theory 60(11), 7345–7354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xie, Y., Yuan, J., Fujiwara, Y.: Quantum synchronizable codes from quadratic residue codes and their supercodes. In: IEEE Information Theory Workshop, pp. 172–176 (2014)

  11. Xie, Y., Yang, L., Yuan, J.: Q-Ary chain-containing quantum sychronizable codes. IEEE Commun. Lett. 20(3), 414–417 (2016)

    Article  Google Scholar 

  12. Guenda, K., La Guardia, G.G., Gulliver, T.A.: Algebraic quantum synchronizable codes. J. Appl. Math. Comput. 55, 393–407 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, L., Ma, Z.: Non-binary quantum sychronizable codes from repeated-root cyclic codes. IEEE Trans. Inf. Theory 64(3), 1461–1470 (2018)

    Article  MATH  Google Scholar 

  14. Li, L., Zhu, S., Liu, L.: Quantum synchronizable codes from the cyclotomy of order four. IEEE Commun. Lett. 23(1), 12–15 (2019)

    Article  Google Scholar 

  15. Luo, L., Ma, Z., Lin, D.: Two new families of quantum synchronizable codes. Quantum Inf. Process. 18(9), 277–294 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Du, C., Ma, Z., Luo, L., et al.: On a family of Quantum synchronizable codes based on the \(\left(\lambda (u+v)\mid u-v\right)\) construction. IEEE Access 8, 8449–8458 (2019)

    Article  Google Scholar 

  17. Liu, H., Liu, X.: Quantum synchronizable codes from finite rings. Quantum Inf. Process. 20, 125–144 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shi, X., Yue, Q., Huang, X.: Quantum synchronizable codes from the Whiteman’s generalized cyclotomy. Cryptogr. Commun. 13 (2021)

  19. Dinh, H.Q., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic codes of length \(5p^s\) over \({\rm F}_p^m\). Appl. Algebra Eng. Commun. Comput. (2021)

  20. Bakshi, G.K., Raka, M.: A class of constacyclic codes over a finite field. Finite Fields Appl. 18, 362–377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ling, S., Xing, C.: Coding Theory. Cambridge, New York (2004)

  22. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correctiong codes. Elsevier, New York (1978)

    Google Scholar 

  23. Wu, Y., Yue, Q., Fan, S.: Self-reciprocal and self-conjugate-reciprocal irreducible factors of \(x^n-\lambda \) and their applications. Finite Fields their Appl. 63, 101648 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Daskalov, R.N., Gulliver, T.A.: Bounds on minimum distance for linear codes over \({\rm GF}(5)\). Appl. Algebra Eng. Commun. Comput. 9(6), 547–558 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Boukliev, I.G.: New bounds for the minimum length of quanternary linear codes of dimension five. Discret. Math. 169(1–3), 185–192 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. VanLint, J.H., MacWilliams, F.J.: Generalized quadratic residue codes. IEEE Trans. Inf. Theory 24(6), 730–737 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. https://www.codetables.de (2021)

  28. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express the great appreciation to the patient reviewer especially for his/her constructive comments which greatly improved the innovation and readability of this paper. Besides, the authors are also thankful to the Shandong Provincial Natural Science Foundation, China (No. ZR2022MA061) and National Natural Science Foundation of China (No. 61902429) and the Graduate Innovation Project of China University of Petroleum (East China) (No. YCX2021137) and the Fundamental Research Funds for the Central Universities (No. 22CX03015A).

Author information

Authors and Affiliations

Authors

Contributions

Tongjiang Yan is assigned as Corresponding Author and acts on behalf of all co-authors and ensures that questions related to the accuracy or integrity of any part of the work are appropriately addressed. Shiwen Sun contributed to the study conception and design. The first draft of the manuscript was written by Shiwen Sun, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tongjiang Yan.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

The authors promise that the results of this article are correct and original and it has not been published in other journals before.

Consent to participate

The authors consent to participate.

Consent for publication

All authors consent for publication.

Code availability

The code generated during this study is included in the supplementary information files.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Yan, T., Sun, Y. et al. Non-binary quantum synchronizable codes based on cyclic codes over \(\textrm{F}_q\). Quantum Inf Process 22, 72 (2023). https://doi.org/10.1007/s11128-022-03794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03794-1

Keywords

Navigation