Skip to main content
Log in

Fault-tolerant error correction for quantum Hamming codes with only two ancillary qudits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

High-dimensional quantum error correction codes (QECCs) are widely used to enhance the security and coding capabilities of the entire quantum systems. While these codes show promise in achieving reliable quantum computing by executing a set of universal quantum gates, quantum gate faults present a challenge for implementing universal quantum computing. The ability to perform universal quantum gates in a fault-tolerant manner is required. In this paper, we propose a fault-tolerant error correction scheme which allows the entire correction process to proceed smoothly, even in the presence of quantum gate faults. Firstly, by equipping the syndrome-extracted circuit with a flag qudit, it is possible to parallel the error detection of coding blocks with the fault detection of quantum gates to detect noise and correlated errors. Then, by giving a feasible permutation of quantum gates, the syndromes can identify the error type and location. We interpret the permutation with an example of Hamming code \([[13,7,3]]_{3}\), a three-dimensional QECC, using only two ancillary qudits. Finally, the results show that our scheme is valid for any quantum Hamming code. The overhead of qudits required in our scheme is independent of the weight and quantity of stabilizer generators, and only two ancillary qudits are involved. Consequently, our scheme is very promising for achieving a low logical error rate in a fault-tolerant manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  3. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)

    Article  Google Scholar 

  4. Lloyd, S.: Universal quantum simulators. Science 1073–1078 (1996)

  5. Yin, J., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Article  Google Scholar 

  6. Minder, M., et al.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13(5), 334–338 (2019)

    Article  ADS  Google Scholar 

  7. Sparrow, C., et al.: Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557(7707), 660–667 (2018)

    Article  ADS  Google Scholar 

  8. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098 (1996)

    Article  ADS  Google Scholar 

  9. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chen, X., Zeng, B., Chuang, I.L.: Nonbinary codeword-stabilized quantum codes. Phys. Rev. A 78(6), 062315 (2008)

    Article  ADS  Google Scholar 

  13. Bourennane, M.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64 (1) (2001)

  14. Nikolopoulos, G.M., Ranade, K.S., Alber, G.: Error tolerance of two-basis quantum key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73(3), 176 (2006)

    Article  Google Scholar 

  15. Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. Chaos Solitons Fractals 10(10), 1749–1758 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hostens, E., Dehaene, J., De Moor, B.: Stabilizer states and clifford operations for systems of arbitrary dimensions and modular arithmetic. Phys. Rev. A 71(4), 042315 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nadkarni, P.J., Garani, S.S.: Encoding of nonbinary entanglement-unassisted and assisted stabilizer codes. IEEE Trans. Quantum Eng. 2, 1–22 (2021)

    Google Scholar 

  20. Nadkarni, P.J., Garani, S.S.: Quantum error correction architecture for qudit stabilizer codes. Phys. Rev. A 103(4), 042420 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. Aliferis, P., Gottesman, D., Preskill, J.: Accuracy threshold for postselected quantum computation. Quantum Inf. Comput. 8(3 &4), 0181–0244 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Shor, P. W.: Fault-tolerant quantum computation. arXiv e-prints (1996)

  23. Steane, A.M.: Active stabilization, quantum computation, and quantum state synthesis. Phys. Rev. Lett. 78(11), 2252–2255 (1997)

    Article  ADS  Google Scholar 

  24. Knill, E.: Scalable quantum computing in the presence of large detected-error rates. Phys. Rev. A 71(4), 042322 (2005)

    Article  ADS  Google Scholar 

  25. Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)

    Article  ADS  Google Scholar 

  26. Chao, R., Reichardt, B.W.: Quantum error correction with only two extra qubits. Phys. Rev. Lett. 121(5), 050502 (2018)

    Article  ADS  Google Scholar 

  27. Chao, R., Reichardt, B.W.: Fault-tolerant quantum computation with few qubits. NPJ Quantum Inf. 4(1), 1–8 (2018)

    Article  Google Scholar 

  28. Chao, R., Reichardt, B.W.: Flag fault-tolerant error correction for any stabilizer code. PRX Quantum 1(1), 010302 (2020)

    Article  Google Scholar 

  29. Chamberland, C., Beverland, M.E.: Flag fault-tolerant error correction with arbitrary distance codes. Quantum 2, 53 (2018)

    Article  Google Scholar 

  30. Reichardt, B.W.: Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits. Quantum Sci. Technol. 6(1), 015007 (2020)

    Article  ADS  Google Scholar 

  31. Baireuther, P., Caio, M.D., Criger, B., Beenakker, C.W., O’Brien, T.E.: Neural network decoder for topological color codes with circuit level noise. New J. Phys. 21(1), 013003 (2019)

    Article  ADS  Google Scholar 

  32. Bermudez, A., Xu, X., Gutiérrez, M., Benjamin, S., Müller, M.: Fault-tolerant protection of near-term trapped-ion topological qubits under realistic noise sources. Phys. Rev. A 100(6), 062307 (2019)

    Article  ADS  Google Scholar 

  33. Tansuwannont, T.: Flag fault-tolerant error correction for cyclic CSS codes. Master’s thesis, University of Waterloo (2018)

  34. Tansuwannont, T., Chamberland, C., Leung, D.: Flag fault-tolerant error correction, measurement, and quantum computation for cyclic Calderbank-Shor-Steane codes. Phys. Rev. A 101(1), 012342 (2020)

    Article  ADS  Google Scholar 

  35. Chamberland, C., Cross, A.W.: Fault-tolerant magic state preparation with flag qubits. Quantum 3, 143 (2019)

    Article  Google Scholar 

  36. Shi, Y., Chamberland, C., Cross, A.: Fault-tolerant preparation of approximate GKP states. New J. Phys. 21(9), 093007 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. Chamberland, C., Noh, K.: Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits. NPJ Quantum Inf. 6(1), 1–12 (2020)

    Article  Google Scholar 

  38. Gheorghiu, V.: Standard form of qudit stabilizer groups. Phys. Lett. A 378(5–6), 505–509 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Miller, D., Holz, T., Kampermann, H., Bruß, D.: Propagation of generalized pauli errors in qudit clifford circuits. Phys. Rev. A 98(5), 052316 (2018)

    Article  ADS  Google Scholar 

  40. Chen, X.B., et al.: Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes. Chin. Phys. B 31(4), 040305 (2022)

    Article  ADS  Google Scholar 

  41. Nadkarni, P.J., Garani, S.S.: Entanglement-assisted Reed-Solomon codes over qudits: theory and architecture. Quantum Inf. Process. 20(4), 1–68 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Grant No. 62271070) and the Fundamental Research Funds for Beijing Municipal Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, LY., Chen, XB., Xu, G. et al. Fault-tolerant error correction for quantum Hamming codes with only two ancillary qudits. Quantum Inf Process 22, 70 (2023). https://doi.org/10.1007/s11128-022-03796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03796-z

Keywords

Navigation