Skip to main content
Log in

Optical multi-Fano-like phenomena with giant atom–waveguide systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Coupling between giant atoms and waveguides is expected to be of great importance in the field of quantum information science. In this paper, we study the influence of frequency detuning between incident photons and giant atoms on photon scattering based on the model of giant atoms coupling with one-dimensional waveguide where atoms are placed in a braided structure. The system may be designed with microwave transmission line and superconducting quantum bits. Comparing with various simulation results with different numbers of giant atoms and different atom–waveguide dipole interaction intensities, we confirm that the system can produce multi-Fano-like resonance, which may be useful in the field of quantum sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of photons inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    ADS  Google Scholar 

  2. Cheng, M.T., Ma, X.S., Ding, M.T., Luo, Y.Q., Zhao, G.X.: Single-photon transport in one-dimensional coupled-resonator waveguide with local and nonlocal coupling to a nanocavity containing a two-level system. Phys. Rev. A 85, 053840 (2012)

    ADS  Google Scholar 

  3. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005)

    ADS  Google Scholar 

  4. Hayashi, S., Nesterenko, D.V., Rahmouni, A., Sekkat, Z.: Observation of fano line shapes arising from coupling between surface plasmon polariton and waveguide modes. Appl. Phys. Lett. 108, 051101 (2016)

    ADS  Google Scholar 

  5. Mukhopadhyay, D., Agarwal, G.S.: Transparency in a chain of disparate quantum emitters strongly coupled to a waveguide. Phys. Rev. A 101, 063814 (2020)

    ADS  Google Scholar 

  6. Guo, L., Kockum, A.F., Marquardt, F., Johansson, G.: Oscillating bound states for a giant atom. Phys. Rev. R 2, 043014 (2020)

    Google Scholar 

  7. Trivedi, R., Fischer, K., Mishra, S.D., Vuckovic, J.: Point-coupling hamiltonian for frequency-independent linear optical devices. Phys. Rev. A 100, 043827 (2019)

    ADS  Google Scholar 

  8. Roy, D., Wilson, C.M., Firstenberg, O.: Strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 89, 021001 (2017)

    MathSciNet  Google Scholar 

  9. Kannan, B., Ruckriegel, M.J., Campbell, D.L., Kockum, A.F., Oliver, W.D.: Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 7818 (2020)

    Google Scholar 

  10. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., et al.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402 (2007)

    ADS  Google Scholar 

  11. Wei, H., Ratchford, D., Li, X., Xu, H., Shih, C.K.: Propagating surface plasmon induced photon emission from quantum dots. Nano Lett. 9, 4168 (2009)

    ADS  Google Scholar 

  12. Goban, A., Hung, C.L., Hood, J.D., Yu, S.P., Kimble, H.J.: Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015)

    ADS  Google Scholar 

  13. Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A., Jr., Pashkin, Y.A., Yamamoto, T., Inomata, K., et al.: Resonance fluorescence of a single artificial atom. Science 327, 840 (2010)

    ADS  Google Scholar 

  14. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    ADS  Google Scholar 

  15. Cheng, M.T., Song, Y.Y.: Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978 (2012)

    ADS  Google Scholar 

  16. Cheng, M.T., Xu, J., Agarwal, G.S.: Waveguide transport mediated by strong coupling with atoms. Phys. Rev. A 95, 053807 (2017)

    ADS  Google Scholar 

  17. Mukhopadhyay, D., Agarwal, G.S.: Multiple fano interferences due to waveguide-mediated phase-coupling between atoms. Phys. Rev. A 100, 013812 (2019)

    ADS  Google Scholar 

  18. Dinc, F., Hayward, L.E., Brańczyk, A.M.: Multi-dimensional super- and subradiance in waveguide quantum electrodynamics. Phys. Rev. R 2, 043149 (2020)

    Google Scholar 

  19. Albrecht, A., Caneva, T., Chang, D.E.: Changing optical band structure with single photons. New J. Phys. 19, 115002 (2017)

    ADS  Google Scholar 

  20. Corzo, N.V., Gouraud, B., Chandra, A., Goban, A., Sheremet, A.S., Kupriyanov, D.V., et al.: Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett. 117, 133603 (2016)

    ADS  Google Scholar 

  21. Srensen, H.L., Béguin, J.-B., Kluge, K.W., Iakoupov, I., Srensen, A.S., Müller, J.H., et al.: Coherent backscattering of light off one-dimensional atomic strings. Phys. Rev. Lett. 117, 133604 (2016)

    ADS  Google Scholar 

  22. Walls, D.F., Milburn, G.: Quantum Optics. World Publishing Co. 2nd edn (Springer, 2008)

  23. Kockum, A.F.: Quantum optics with giant atoms—the first five years. In International Symposium on Mathematics, Quantum Theory, and Cryptography (Vol. 33). Springer Singapore, pp. 125–146 (2021)

  24. Kockum, A.F., Delsing, P., Johansson, G.: Designing frequency-dependent relaxation rates and lamb shifts for a giant artificial atom. Phys. Rev. A 90, 013837 (2014)

    ADS  Google Scholar 

  25. Vadiraj, A.M., Ask, A., Mcconkey, T.G., Nsanzineza, I., Chang, C., Kockum, A.F., et al.: Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics. Phys. Rev. A 103, 023710 (2021)

    ADS  Google Scholar 

  26. Ask, A., Fang, Y., Kockum, A.F.: Synthesizing electromagnetically induced transparency without a control field in waveguide qed using small and giant atoms. arXiv:2011.15077 (2020)

  27. Gonzalez-Tudela, A., Munoz, C.S., Cirac, J.I.: Engineering and harnessing giant atoms in high-dimensional baths: a proposal for implementation with cold atoms. Phys. Rev. Lett. 122, 203603 (2019)

    ADS  Google Scholar 

  28. Kockum, A.F., Delsing, P., Johansson, G.: Designing frequency-dependent relaxation rates and lamb shifts for a giant artificial atom. Phys. Rev. A 90, 013837 (2014)

    ADS  Google Scholar 

  29. Guo, L., Grimsmo, A., Kockum, A.F., Pletyukhov, M., Johansson, G.: Giant acoustic atom: a single quantum system with a deterministic time delay. Phys. Rev. A 95, 053821 (2017)

    ADS  Google Scholar 

  30. Andersson, G., Suri, B., Guo, L., Aref, T., Delsing, P.: Non-exponential decay of a giant artificial atom. Nat. Phys. 15, 1123 (2019)

    Google Scholar 

  31. Guo, S., Wang, Y., Purdy, T., Taylor, J.: Beyond spontaneous emission: giant atom bounded in continuum. Phys. Rev. A 102, 033706 (2020)

    ADS  Google Scholar 

  32. Wang, X., Liu, T., Kockum, A.F., Li, H.R., Nori, F.: Tunable chiral bound states with giant atoms. Phys. Rev. Lett. 126, 043602 (2021)

    ADS  Google Scholar 

  33. Cilluffo, D., Carollo, A., Lorenzo, S., Gross, J.A., Ciccarello, F.: Collisional picture of quantum optics with giant emitters. Phys. Rev. Res 2, 043184 (2020)

    Google Scholar 

  34. Kockum, A.F., Johansson, G., Nori, F.: Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics. Phys. Rev. Lett. 120, 140404 (2018)

    ADS  Google Scholar 

  35. Nie, W., Shi, T., Nori, F., Liu, Y.X.: Topology-enhanced nonreciprocal scattering and photon absorption in a waveguide. Phys. Rev. Appl. 15, 044041 (2020)

    ADS  Google Scholar 

  36. Luk’Yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., et al.: The fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707 (2010)

    ADS  Google Scholar 

  37. Lassiter, J.B., Sobhani, H., Fan, J.A., Kundu, J., Capasso, F., Nordlander, P., et al.: Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 10, 3184 (2010)

    ADS  Google Scholar 

  38. Sun, B., Zhao, L., Wang, C., Yi, X., Liu, Z., Wang, G., et al.: Tunable fano resonance in e-shape plasmonic nanocavities. J. Phys. Chem. C 118, 25124 (2004)

    Google Scholar 

  39. Hao, F., Sonnefraud, Y., Dorpe, P.V., Maier, S.A., Halas, N.J., Nordlander, P.: Symmetry breaking in plasmonic nanocavities: subradiant lspr sensing and a tunable fano resonance. Nano Lett. 8, 3983 (2008)

    ADS  Google Scholar 

  40. Wu, C., Khanikaev, A.B., Adato, R., Arju, N., Shvets, G.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2012)

    ADS  Google Scholar 

  41. Wang, J., Yuan, B., Fan, C., He, J., Ding, P., Xue, Q., et al.: A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt. Express 21, 25159 (2013)

    ADS  Google Scholar 

  42. Wu, C., Khanikaev, A.B., Adato, R., Arju, N., Shvets, G.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Phys. Rev. Lett. 106, 107403 (2011)

    ADS  Google Scholar 

  43. Abdallah, A., Mahmoud, A., Mokhtar, M., Mousa, A., Ayoub, H.S., Elbashar, Y.H.: Raman spectroscopic and advanced signal processing analyses for real time standoff detection and identification of explosives. Opt. Quant. Electron. 54, 1–21 (2022)

    Google Scholar 

  44. Hao, F., Nordlander, P., Sonnefraud, Y., Dorpe, P.V., Maier, S.A.: Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3, 643–52 (2009)

    Google Scholar 

  45. Xu, P., Dong, Y., Zhang, J., Zhou, D., Jiang, T., Xu, J., et al.: Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using brillouin optical time-domain analysis. Opt. Express 23, 22714 (2015)

    ADS  Google Scholar 

  46. Jia, T.: Fano Resonance and Spaser of Nanostructure Consisting of a Rod and Concentric Square Ring-Disk. Optoelectronic Devices and Integration. JW3A-52 (2015)

  47. Tanemura, T., Ozeki, Y., Kikuchi, K.: Modulational instability and parametric amplification induced by loss dispersion in optical fibers. Phys. Rev. Lett. 93, 163902 (2004)

    ADS  Google Scholar 

  48. Beletskii, N.I., Gvozdev, S., Borysenko, A.: Interaction of plasma and defective modes in one-dimensional layered periodic dielectric structures bordering upon plasma-like media. Telecommun. Radio Eng. 74 (2015)

  49. Liu, W., Wang, R., Li, W., Zhang, B., Xing, E., Zhou, Y., et al.: Modulation of fano-like resonance in spherical microbubble cavity for high sensitivity pressure sensing. Appl. Phys. Express 15, 046504 (2022)

    ADS  Google Scholar 

  50. Chenari, Z., Latifi, H., Ranjbar-Naeini, O.R., Zibaii, M.I., Behroodi, E., Asadollahi, A.: Tunable fano-like lineshape in an adiabatic tapered fiber coupled to a hollow bottle microresonator. J. Lightwave Technol. 36, 735 (2018)

    ADS  Google Scholar 

  51. Limonov, M.F.: Fano resonance for applications. Adv. Opt. Photon. 13, 703–771 (2021)

    Google Scholar 

  52. Veluthandath, A.V., Bhattacharya, S., Murugan, G.S., Bisht, P.B.: Fano resonances and photoluminescence in self-assembled high-quality-factor microbottle resonators. IEEE Photon. Technol. Let. 31, 226 (2019)

    ADS  Google Scholar 

  53. Wang, Y., Zhang, K., Zhou, S., Wu, Y., Chi, M., Hao, P.: Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator. Opt. Lett. 41, 1825–1828 (2016)

    ADS  Google Scholar 

  54. Huang, K., Cao, L., Zhai, P., Liu, P., Cheng, L., Liu, J.: High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Opt. Commun. 470, 125392 (2020)

    Google Scholar 

  55. Ruan, B., Liu, C., Xiong, C., Li, M., Li, H.: Absorption and self-calibrated sensing based on tunable fano resonance in a grating coupled graphene/waveguide hybrid structure. J. Lightwave Technol. 99, 1–1 (2021)

    Google Scholar 

  56. Pan, X., Wang, G.: Magneto-induced fano-like cavity interference in three-dimensional metamaterials. Phys. Scripta. 91(8), 085501 (2016)

    ADS  Google Scholar 

  57. Limonov, M.F., Rybin, M.V., Poddubny, A.N., Kivshar, Y.S.: Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017)

    Google Scholar 

  58. Grineviciute, L., Nikitina, L., Babayigit, C., Staliunas, K.: Fano-like resonances in nanostructured thin films for spatial filtering. Appl. Phys. Lett. 118, 131114 (2021)

    ADS  Google Scholar 

  59. Qi, Y., Wang, L., Zhang, Y., Zhang, T., et al.: Multiple fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing. Chinese Phys. B. 29(6), 067303 (2020)

    ADS  Google Scholar 

  60. Shen, J.-T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    ADS  Google Scholar 

  61. Kockum, A.F., Delsing, P., Johansson, G.: Designing frequency-dependent relaxation rates and lamb shifts for a giant artificial atom. Phys. Rev. A 90, 013837 (2014)

    ADS  Google Scholar 

  62. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., et al.: Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 62165014 and 12174055) and Fujian Natural Science Foundation (Grant No. 2021J01185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JY., Jin, JW., Liu, HY. et al. Optical multi-Fano-like phenomena with giant atom–waveguide systems. Quantum Inf Process 22, 74 (2023). https://doi.org/10.1007/s11128-022-03816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03816-y

Keywords

Navigation