Skip to main content
Log in

Practical efficient 1-out-of-n quantum oblivious transfer protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

1-out-of-n oblivious transfer is an important research topic in secure multiparty computation, including its quantum version, i.e., quantum oblivious transfer (QOT). However, most QOT protocols (including its most practical variant called QKD-based quantum private query) cannot efficiently send the receiver exact one bit from the n bits transmitted by the sender. These protocols’ communication complexity is usually O(nlogn). Since modern data size can be extremely large, it is important to reduce this communication as much as possible. In this sense, we propose a more efficient 1-out-of-n QOT protocol, whose communication complexity is O(logn). A potential loophole in our protocol is part of transmitted bits may be partial correlated. We then give an improved protocol to eliminate their correlation with communication complexity of O(n). Besides, our protocol has better performance in resisting the joint-measurement attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this article are available from the corresponding author upon reasonable request.

References

  1. Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983)

    MATH  Google Scholar 

  2. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM. 28, 637 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Shor, P.W.: In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, p. 124. IEEE, Piscataway (1994)

  4. Grover, L.K.: In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, p. 212. ACM, New York (1996)

  5. Li, Z.-Q., Cai, B.-B., Sun, H.-W., et al.: Novel quantum circuit implementation of Advanced Encryption Standard with low costs. Sci. China-Phys. Mech. Astron. 65, 290311 (2022)

    ADS  Google Scholar 

  6. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  MATH  Google Scholar 

  7. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175-179. IEEE Press, New York (1984)

  8. Yin, J., Li, Y.-H., Liao, S.-K., et al.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582(7813), 501–505 (2020)

    ADS  Google Scholar 

  9. Chen, J.-P., Zhang, C., Liu, Y., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas[J]. Nat. Photon. 15, 570–575 (2021)

    ADS  Google Scholar 

  10. Feng, Z., Li, S.-B., Xu, Z.-Y.: Experimental underwater quantum key distribution. Opt. Express. 29(6), 8725–8736 (2021)

    ADS  Google Scholar 

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    ADS  Google Scholar 

  13. Xiao, L., Long, G.-L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)

    ADS  Google Scholar 

  14. Dehkordi, M.H., Fattahi, E.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China phy. Mech. Astron. 55, 1828–1831 (2012)

    Google Scholar 

  15. Liao, Q., Liu, H., Zhu, L., et al.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A. 103(3), 032410 (2021)

    ADS  MathSciNet  Google Scholar 

  16. Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  17. Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A. 93, 042318 (2016)

    ADS  Google Scholar 

  18. Giovannetti, V., Lloyed, S.: Quantum private query. Phys. Rev. Lett. 10, 230502 (2008)

    MATH  Google Scholar 

  19. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A. 84, 022313 (2011)

    ADS  Google Scholar 

  20. Wei, C.-Y., Cai, X.-Q., Wang, T.-Y., et al.: Error tolerance bound in QKD-based quantum private query. IEEE J. Sel. Areas Commun. 38(3), 517–527 (2020)

    Google Scholar 

  21. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65(3), 032302 (2002)

    ADS  Google Scholar 

  22. Lin, S., Wen, Q.-Y., Gao, F., et al.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A. 78, 5175–5179 (2008)

    Google Scholar 

  23. Wang, C., Deng, F.-G., Li, Y.-S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, 44305 (2005)

    ADS  Google Scholar 

  24. Qi, Z.-T., Li, Y.-H., Huang, Y.-W., et al.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10(1), 183 (2021)

    ADS  Google Scholar 

  25. Pitalúa, D.: One-out-of-\(m\) spacetime-constrained oblivious transfer. Phys. Rev. A. 100, 012302 (2019)

    ADS  MathSciNet  Google Scholar 

  26. Rahaman, R.: Asymptotically secure All-or-nothing Quantum Oblivious Transfer. arXiv:2111.08484. (2021)

  27. Hayashi, M., Song, S.: Two-Server Oblivious Transfer for Quantum Messages. arXiv:2211.03308. (2022)

  28. Stroh, L., Horová, N., Stárek, R., et al.: Non-interactive XOR quantum oblivious transfer: optimal protocols and their experimental implementations. arXiv:2209.11300. (2022)

  29. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened securityassumptions (extended abstract). In: Proceedings of 29th Symposium on Foundations of Computer Science, pp. 42–52. IEEE Press, Piscataway (1988)

  30. Crépeau, C.: Quantum oblivious transfer. J. Mod. Opt. 41, 2445–2454 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3420 (1997)

    ADS  Google Scholar 

  32. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3412 (1997)

    ADS  Google Scholar 

  33. He, G.-P., Wang, Z.-D.: Oblivious transfer using quantum entanglement. Phys. Rev. A. 73, 012331 (2006)

    ADS  Google Scholar 

  34. Yang, Y.-G., Xu, P., Tian, J., et al.: Quantum oblivious transfer with an untrusted third party. Optik 125(18), 5409–5413 (2014)

    ADS  Google Scholar 

  35. Yang, Y.-G., Yang, R., Cao, W.-F., et al.: Flexible quantum oblivious transfer. Int. J. Theor. Phys. 56(4), 1286–1297 (2017)

    MATH  Google Scholar 

  36. Jakobi, M., et al.: Practical private database queries based on a quantumkey-distribution protocol. Phys. Rev. A. 83(2), 022301 (2011)

    ADS  Google Scholar 

  37. Gao, F., Qin, S.-J., Huang, W., Wen, Q.-Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)

    Google Scholar 

  38. Liu, B., Gao, F., Huang, W., Wen, Q.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)

    Google Scholar 

  39. Zhang, J.-L., Guo, F.-Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A. 88, 022334 (2013)

    ADS  Google Scholar 

  40. Wei, C.-Y., Gao, F., Wen, Q.-Y., Wang, T.-Y.: Practical quantum private query of blocks based on unbalanced-state Bennett–Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Google Scholar 

  41. Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express. 20, 17411 (2012)

    ADS  Google Scholar 

  42. Wei, C.-Y., Cai, X.-Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Amiri, R., Starek, R., Reichmuth, D., Puthoor, I.V., et al.: Imperfect 1-out-of-2 quantum oblivious transfer: bounds, a protocol, and its experimental implementation. PRX Quantum. 2(1), 010335 (2021)

    Google Scholar 

  44. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)

    ADS  MathSciNet  Google Scholar 

  45. Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57(3), 160–180 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Wallden, P., Dunjko, V., Andersson, E.: Minimum-cost quantum measurements for quantum information. J. Phys. A: Math. Theor. 47, 125303 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Hausladen, P., Wootters, W.K.: A ‘pretty good’ measurement for distinguishing quantum states. J. Modern Optics. 41(12), 2385–2390 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Audenaert, K.M., Mosonyi, M.: Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination. J. Math. Phys. 55, 102201 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Chou, Y.-H., Zeng, G.-J., Kuo, S.-Y.: One-out-of-two quantum oblivious transfer based on nonorthogonal states. Sci. Rep. 8, 15927 (2018)

    ADS  Google Scholar 

  50. Yang, Y.-G., Sun, S.-J., Pan, Q.-X., Xu, P.: Reductions between private information retrieval and oblivious transfer at the quantum level. Optik 126, 3206–3209 (2015)

    ADS  Google Scholar 

  51. Yang, Y.-G., Yang, R., Lei, H., et al.: Quantum oblivious transfer with relaxed constraints on the receiver. Quantum Inf. Process. 14(8), 3031–3040 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61972048, 61976024, 62171056, 61902166), the 111 Project B21049, and Natural Science Foundation of Henan Province (Grant No.212300410062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Gao or Qiaoyan Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wei, C., Qin, S. et al. Practical efficient 1-out-of-n quantum oblivious transfer protocol. Quantum Inf Process 22, 99 (2023). https://doi.org/10.1007/s11128-022-03817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03817-x

Keywords

Navigation