Skip to main content
Log in

A novel quantum identity authentication protocol without entanglement and preserving pre-shared key information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Classical authentication schemes are in treat due to current developments in quantum computing. A new quantum authentication protocol designed based on quantum secure direct communication using single photon is proposed in the paper. It can assist verification of the legitimate user identity without revealing the pre-shared key used in the encryption of secure message through one time pad. In the existing protocol, frequent involvement of Eve during trusted identification obtains important information about the pre-shared key. A random Authentication keys and decoy states were used in checking the presence of Eve by a trusted party in two communication channels. The concept of phase kickback helps in revealing the identification the adversary involvement during authentication key verification by CNOT attack. The security of the proposed protocol analyzed was under impersonates attack, intercept measure-resend attack, and entangle measure attacks. The proposed protocol does not require quantum memory or any other entangles sources; therefore, it is feasible for the implementation of with current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available on request to the main author.

References

  1. Li, X., Barnum, H.: Quantum authentication using entangled states. Int. J. Found. Comput. Sci. 15(04), 609–617 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang, I., Zhang, Q., Tang, C.-J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23(9), 2360–2363 (2006)

    Article  ADS  Google Scholar 

  3. Zhang, Y.-S., Li, C.-F., Guo, G.-C.: Quantum authentication using entangled state. arXiv preprint quant-ph/0008044 (2000).

  4. Zhang, Z., Zeng, G., Zhou, N., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356(3), 199–205 (2006)

    Article  ADS  MATH  Google Scholar 

  5. Zhang, S., Chen, Z.-K., Shi, R.-H., Liang, F.-Y.: A novel quantum identity authentication based on Bell states. Int. J. Theor. Phys. 59(1), 236–249 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65(5), 052326 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dusek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60(1), 149 (1999)

    Article  ADS  Google Scholar 

  8. Yuan, H., Liu, Y.-M., Pan, G.-Z., Zhang, G., Zhou, J., Zhang, Z.-J.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Process. 13(11), 2535–2549 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lai, H., Xiao, J., Orgun, M.A., Xue, L., Pieprzyk, J.: Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf. Process. 13(4), 895–907 (2014)

    Article  ADS  MATH  Google Scholar 

  10. Shi, W.-M., Zhang, J.-B., Zhou, Y.-H., Yang, Y.-G.: A novel quantum deniable authentication protocol without entanglement. Quantum Inf. Process. 14(6), 2183–2193 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hong, C.H., Heo, J., Jang, J.G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Arindam, D., Anirban: A short review on quantum identity authentication protocols: how would Bob know that he is talking with Alice?. e-Print: 2112.04234 [quant-ph] (2021)

  13. Zawadzki, P.: Quantum identity authentication without entanglement. Quantum Inf. Process. 18(1), 7 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhu, H., Wang, L., Zhang, Y.: An efficient quantum identity authentication key agreement protocol without entanglement. Quantum Inf. Process. 19(10), 381 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Sobota, M., Kapczynski, A., Banasik, A.: Application of quantum cryptography protocols in authentication process. In: Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, vol. 2, pp. 799–802. IEEE (2011)

  16. Liu, B., Gao, Z., Xiao, Di., Huang, W., Zhang, Z., Bingjie, Xu.: Quantum identity authentication in the counterfactual quantum key distribution protocol. Entropy 21(5), 518 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Pirandola, S., Braunstein, S.L., Mancini, S., Lloyd, S.: Quantum direct communication with continuous variables. EPL (Europhys. Lett.) 84(2), 20013 (2008)

    Article  ADS  Google Scholar 

  18. Li, X., Chen, L.: Quantum authentication protocol using Bell state. In: The First International Symposium on Data, Privacy, and E-Commerce (ISDPE 2007), pp. 128–132. IEEE (2007)

  19. Yang, Y.G., Wen, Q., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Ser. G 51(3), 321–327 (2008)

    Article  MATH  Google Scholar 

  20. Abulkasim, H., Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Inf. 15(04), 1750023 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Abulkasim, H., Hamad, S., El Bahnasy, K., Rida, S.Z.: Authenticated quantum secret sharing with quantum dialogue based on Bell states. Phys. Scr. 91(8), 085101 (2016)

    Article  ADS  Google Scholar 

  22. Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254(4–6), 380–388 (2005)

    Article  ADS  Google Scholar 

  23. Ma, H., Huang, P., Bao, W., Zeng, G.: Continuous-variable quantum Identity authentication based on quantum teleportation. Quantum Inf. Process. 15(6), 2605–2620 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(part 1), 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  25. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  MathSciNet  MATH  Google Scholar 

  26. Crépeau, C., Salvail, L.: Quantum oblivious mutual identification. In: International Conference on the Theory and Applications of Cryptographic Techniques, pp. 133–146. Springer (1995)

  27. Li, Q., Li, Z., Chan, W.H., Zhang, S., Liu, C.: Blind quantum computation with identity authentication. Phys. Lett. A 382(14), 938–941 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Quan, J., Li, Q., Liu, C., Shi, J., Peng, Yu.: A simplified verifiable blind quantum computing protocol with quantum input verification. Quantum Eng. 3(1), e58 (2021)

    Article  Google Scholar 

  29. Shan, R.-T., Chen, X., Yuan, K.-G.: Multi-party blind quantum computation protocol with mutual authentication in network. Sci. China Inf. Sci. 64(6), 162302 (2021)

    Article  MathSciNet  Google Scholar 

  30. Li, W., Shi, R., Guo, Y.: Blind quantum signature with blind quantum computation. Int. J. Theor. Phys. 56(4), 1108–1115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science. Proceedings, pp. 449–458. IEEE (2002)

  32. Yang, Y.G., et al.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. 111(1–2), 23–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gonzalez-Guillen, C.E., Vasco, M.I.G., Johnson, F., Perez, Á.L., del Pozo,: An attack on Zawadzki’s quantum authentication scheme. Entropy 23(4), 389 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wang, D., Li, M., Guo, G.-C., Wang, Q.: An improved scheme on decoy state method for measurement device-independent quantum key distribution. Sci. Rep. (2015). https://doi.org/10.1038/srep15130

    Article  Google Scholar 

  36. Huang, A., Sun, S.-H., Liu, Z., Makarov, V.: Quantum key distribution with distinguishable decoy states. Phys. Rev. A (2018). https://doi.org/10.1103/PhysRevA.98.012330

    Article  Google Scholar 

  37. Trushechkin, A.S., Kiktenko, E.O., Kronberg, D.A., Fedorov, A.K.: Security of the decoy state method for quantum key distribution. IOP Sci. (2021). https://doi.org/10.48550/arXiv.2101.10128

    Article  Google Scholar 

  38. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000). https://doi.org/10.1103/PhysRevLett.85.441

    Article  ADS  Google Scholar 

  39. Ciaran, M., John, H.: Generalised phase kick-back: the structure of computational algorithms from physical principles. New J. Phys. 18, 033023 (2016)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkumar Jayaraman.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B.D., Jayaraman, R. A novel quantum identity authentication protocol without entanglement and preserving pre-shared key information. Quantum Inf Process 22, 92 (2023). https://doi.org/10.1007/s11128-023-03832-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03832-6

Keywords

Navigation